

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 12547-12561

Synthesis of 4-alkoxycarbonyl-butenolides by uncatalyzed one-pot cyclization of 1,3-bis(silyloxy)alk-1-enes with oxalyl chloride

Rüdiger Dede,^a Lars Michaelis,^a Dilver Fuentes,^a Mirza Arfan Yawer,^a Ibrar Hussain,^a Christine Fischer^b and Peter Langer^{a,b,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany ^bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

> Received 23 August 2007; revised 1 October 2007; accepted 4 October 2007 Available online 7 October 2007

Abstract—3-Hydroxy-4-alkoxycarbonyl-butenolides were prepared by one-pot cyclizations of 1,3-bis(silyloxy)alk-1-enes with oxalyl chloride.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

4-Carboxy-, 4-alkoxycarbonyl-, and 4-acyl-butenolides are of considerable pharmacological relevance and occur in a variety of natural products.¹ This includes, for example, (+)- and (-)-lichesterolic acid,² neuropogolic acid,³ isomuronic acid (Scheme 1),^{3a} (+)-praesorediosic acid,⁴ dihydroconstiputic acid,⁵ paniculid C,⁶ and medium-sized bicycles such as 8,14-dioxo-7,11-dehydro-11,13-dihydroacanthospermolide,⁷ cyclospinosolide,⁸ pachyclavulariolide P,⁹ and phlogacanthoside B.¹⁰ 4-Alkoxycarbonyl-butenolides are also important synthetic building blocks. For example, (+)nephrosteranic acid and related y-lactones were prepared by diastereoselective hydrogenation of 5-alkyl-3-mesyloxy-4-ethoxycarbonyl-butenolides.¹¹ Isotetronic acid derivatives, containing a hydroxy group at carbon atom C-3 of the butenolide moiety, are also occurring in many natural products. This includes (+)-leptosphaerin¹² and compound WF-3681,¹³ distomadine B,¹⁴ various ascorbic acid derivatives,15 and many other pharmacologically relevant natural products.¹⁶ Isotetronic acids have been used also as synthetic building blocks during the synthesis of (-)-tetrodotoxin,¹⁷

Scheme 1. Naturally occurring 4-carboxy-butenolides.

0040–4020/\$ - see front matter 0 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.10.025

6-thiosialic and neuraminic acids, $^{18-21}$ nactins, 22 and erythronolide A. 23

3-Hydroxy-4-alkoxycarbonyl-butenolides and related structures have been previously prepared mainly by base-mediated cyclization reactions. This includes the reaction of pyruvates with aldehydes,²⁴ of benzaldehyde with dimethyl methoxyfumarate,25 of acetophenones with formaldehyde and diethyl oxalate,²⁶ and by DABCO mediated dimerization of methyl 2,4-dioxopentanoate.²⁷ A different approach relies on the PPh₃ mediated reaction of ketones with methyl acetoxypropynoate.²⁸ Nair et al. reported the synthesis of spirocycles based on PPh₃ mediated reactions of 1.2-quinones.²⁹ Saalfrank and co-workers reported the synthesis 5-alkylidene-3-hydroxy-4-alkoxycarbonyl-butenolides of by cyclization of 1,3-dicarbonyl compounds with oxalyl chloride.³⁰ Sonoda and co-workers reported the synthesis of 2,3-dioxo-2,3-dihydrofurans by cyclization of acetophenone derived silyl enol ethers with oxalyl chloride.³¹

We developed an efficient approach to 3-hydroxy-5-alkylidenebutenolides by cyclization of 1,3-bis(silyloxy)buta-1,3-dienes³² with oxalyl chloride.³³ Recently, we reported³⁴ a convenient one-pot synthesis of 3-hydroxy-4-alkoxycarbonyl-butenolides by cyclization of oxalyl chloride with 1-alkoxy-1,3-bis(silyloxy)alk-1-enes,³⁵ which can be regarded as bis-silylated 3-hydroxyesters. Herein, we report full details of these studies. With regard to our preliminary communication, we significantly extended the preparative scope. In addition, we report the application of our methodology to the synthesis of an enantiomerically pure butenolide and the functionalization of the products by Suzuki reactions. The reactions reported herein proceed under mild conditions; and the starting materials are readily available.

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

2. Results and discussion

1,3-Bis(silyloxy)alk-1-enes **2a–t** were prepared by the reaction of dilithiated 3-hydroxyesters **1a–t** (available by aldol reaction) with trimethylchlorosilane (Scheme 2, Tables 1 and 2). The cyclization of **2a–t** with oxalyl chloride afforded the 3-hydroxy-4-alkoxycarbonyl-butenolides **3a–t**. The best yields were obtained when the reactions were carried out *without* the presence of a Lewis acid (Table 2). Noteworthy, the reaction of 1,3-bis(silyl enol ethers) with simple acid chlorides³⁶ and the condensation of silyl ketene acetals with oxalyl chloride³⁷ were reported to be best carried out in the absence of Lewis acid. In contrast, the cyclization reactions of 1,3-bis(silyl enol ethers)³³ and 1,1-bis(silyloxy)ketene acetals³⁸ with oxalyl chloride were reported to require the use of catalytic amounts of Me₃SiOTf.

Scheme 2. Synthesis of 4-alkoxycarbonyl-butenolides **3a–t**. Conditions: (i) LDA, THF, 5 min, -78 °C; (ii) (1) LDA (2.2 equiv), THF, 1 h, -78 °C, (2) Me₃SiCl (2.5 equiv), $-78 \rightarrow 20$ °C, 24 h; (iii) $-78 \rightarrow 20$ °C, 18 h.

Most butenolides **3a-t** were isolated in moderate to good yields. The relatively low yields of **3j**, **3l**, and **3d**,**h** can be explained by steric hindrance of the *tert*-butyl group, the unstable nature of the vinyl group, and the cleavage of the *tert*-butyl ester (by HCl formed during the cyclization), respectively. The cyclization of oxalyl chloride with 1,3-bis(silyloxy)alk-1-ene **2u**, prepared from acetone and ethyl

Table 1. Synthesis of 4-(alkoxycarbonyl)-butenolides 3a-t

1–3	R ¹	R^2	% (1) ^a	% (2) ^a	% (3) ^a
a	Me	Me	54	73	52
b	Me	Et	Ь	75	54
c	Et	Et	83	99	77
d	Et	t-Bu	89	97	32
e	<i>n</i> -Pr	Et	71	79	71
f	<i>i</i> -Pr	Et	78	86	65
g	<i>n</i> -Bu	Et	83	100	75
ĥ	<i>n</i> -Bu	t-Bu	92	76	21
i	<i>i</i> -Bu	Et	62	75	63
j	t-Bu	Me	60	73	35
k	<i>n</i> -Hex	Me	65	91	61
1	CH ₂ =CH	Et	70	52	34
m	$CH_2 = CH(CH_2)_8$	Et	65	93	83
n	PhCH ₂	Me	77	87	38
0	Ph	Et	78	92	62
р	4-MeC ₆ H ₄	Et	73	95	67
q	$4-(MeO)C_6H_4$	Et	83	91	32
r	$2-(Me)C_6H_4$	Me	69	74	50
s	$2-(MeO)C_6H_4$	Et	37	88	60
t	4-ClC ₆ H ₄	Et	76	95	43

^a Isolated yields.

^b Commercially available.

Table 2. Optimization of the synthesis of 3a

Entry	Lewis acid (equiv)	(COCl) ₂ (equiv)	c (2a) [M]	<i>t</i> [h], <i>T</i> [°C]	% (3a) ^a
1	Me ₃ SiOTf (0.5)	2.0	0.12	0.5 h, -78 °C, 96 h, 20 °C	51
2	Me ₃ SiOTf (0.5)	2.5	0.075	0.5 h, -78 °C, 2 h, 50 °C	14
3	Me ₃ SiOTf (0.5)	1.3	0.15	18 h, 20 °C	50
4	Me ₃ SiOTf (1.0)	1.3	0.12	0.5 h, -78 °C, 96 h, 20 °C	53
5	Me ₃ SiOTf (4.0)	4.3	0.03	72 h, $-78 \rightarrow 20$ °C	30
6	Me ₃ SiOTf (4.0)	4.3	0.03	72 h, $0 \rightarrow 20 ^{\circ}\text{C}$	23
7	none	1.0	0.10	$18 \text{ h}, -78 \rightarrow 20 ^{\circ}\text{C}$	54
8	BF ₃ ·OEt ₂ (2.0)	1.3	0.12	0.5 h, -78 °C, 96 h, 20 °C	40
9	TiCl ₄ (2.0)	1.3	0.12	72 h, $-78 \rightarrow 20$ °C	$0^{\mathbf{b}}$
10	TiCl ₄ (2.0)	1.3	0.12	72 h, $-78 \rightarrow 20$ °C	$0^{\mathbf{b}}$

^a Isolated yields.

^b Complex mixture.

acetate, gave the 5,5-dimethyl-butenolide **3u** in low yield, presumably due to the steric hindrance (Scheme 3).

Scheme 3. Synthesis of 5,5-dimethyl-butenolide 3u. Conditions: (i) LDA, THF, 5 min, $-78 \degree C$; (ii) (1) LDA (2.2 equiv), THF, 1 h, $-78 \degree C$, (2) Me₃SiCl (2.5 equiv), $-78 \rightarrow 20 \degree C$, 24 h; (iii) $-78 \rightarrow 20 \degree C$, 18 h.

Butenolides **3a–t** were prepared in racemic form (as racemic 3-hydroxyesters **1** were employed). Starting with (R)-**1a**, the optically pure butenolide (R)-**3a** could be successfully prepared (Scheme 4, Fig. 1). This experiment shows that no racemization occurred during the formation of 1,3-bis-(trimethylsilyloxy)alk-1-ene (R)-**2a** and the subsequent cyclization.

Scheme 4. Synthesis of optically pure butenolide (*R*)-**3a**. Conditions: (i) LDA, THF, 5 min, $-78 \degree C$; (ii) (1) LDA (2.2 equiv), THF, 1 h, $-78 \degree C$, (2) Me₃SiCl (2.5 equiv), $-78 \rightarrow 20 \degree C$, 24 h; (iii) $-78 \rightarrow 20 \degree C$, 18 h.

The hydroxy group of the isotetronic acid was successfully functionalized by transition metal catalyzed cross-coupling reactions (Scheme 5, Table 3). The products were isolated in moderate to good yields, except for **5d** prepared from 2-(methoxyphenyl)boronic acid.

In conclusion, a variety of 3-hydroxy-4-alkoxycarbonylbutenolides were prepared by one-pot cyclizations of

Figure 1. Determination of the enantiomeric excess of butenolide (R)-3a: chiral HPLC on a CHIRALCEL OD-H column. Conditions: hexane/ ethanol=95:5+0.1% CF₃COOH (0.5 mL/min). Maxima after 20.61/22.50/22.74 min.

Table 3. Synthesis of butenolides 5a-k

3	4	5	R^1	\mathbf{R}^2	R ³	% (4) ^a	% (5) ^a
f	a	a	<i>i</i> -Pr	Et	Ph	91	63
g	b	b	<i>n</i> -Bu	Et	Ph	84	76
5	b	с	<i>n</i> -Bu	Et	4-MeC ₆ H ₄	84	45
5	b	d	<i>n</i> -Bu	Et	2-MeOC ₆ H ₄	84	24
	b	e	<i>n</i> -Bu	Et	3,4-(MeO) ₂ C ₆ H ₃	84	56
	b	f	<i>n</i> -Bu	Et	3,4,5-(MeO) ₃ C ₆ H ₂	84	64
	b	g	<i>n</i> -Bu	Et	Thien-2-yl	84	66
	с	ĥ	<i>i</i> -Bu	Et	4-MeOC ₆ H ₄	86	57
	d	i	t-Bu	Me	Ph	51	86
	e	j	n-Hex	Me	Ph	77	61
,	f	k	Ph	Et	Ph	53	45

^a Isolated yields.

1,3-bis(silyloxy)alk-1-enes with oxalyl chloride. The method is applicable to the synthesis of enantiomerically pure butenolides. This is useful, since there exist many methods for the enantioselective synthesis of 3-hydroxyesters. The oxalyl derived hydroxy group can be functionalized by Suzuki cross-coupling reactions of the enol triflate.

3. Experimental section

3.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For ¹H and ¹³C NMR spectra the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, H₂O), or electrospray ionization (ESI). For preparative scale chromatography, silica gel (60–200 mesh) was used. Melting points are uncorrected.

3.2. General procedure for the preparation of 4-alkoxy-carbonyl-butenolides 3a–u

To a CH₂Cl₂ solution of **2a–u** was added a CH₂Cl₂ solution of oxalyl chloride at -78 °C. The reaction mixture was allowed to warm to 20 °C within 15–24 h. Ether (60 mL) and brine (20 mL) were added, the organic and the aqueous layer were separated, and the latter was extracted with ether (3×30 mL). The combined organic layers were washed with water (10 mL), dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel) or recrystallized (CH₂Cl₂/ *n*-hexane) to give 4-alkoxycarbonyl-butenolides **3a–u**.

3.2.1. Methyl 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-3-carboxylate (3a). Starting with 2a (261 mg, 0.99 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.50 mL, 1.00 mmol), **3a** was isolated by column chromatography (*n*-hexane/ $Et_2O=1:1$) as a slightly yellow solid (89 mg, 52%). Mp 48–49 °C; R_f 0.25 (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (250 MHz, CDCl₃): δ =1.55 (d, ${}^{3}J=6.4$ Hz, 3H, CHCH₃), 3.91 (s, 3H, OCH₃), 5.16 (q, ³*J*=6.4 Hz, 1H, CHCH₃), 8.4 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ=19.4 (CHCH₃), 52.5 (OCH₃), 74.8 (OCH), 119.8 (CCH), 151.6 (COH), 164.6, 165.7 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3395 (br, s), 3344 (s), 2958 (w), 1781 (s), 1717 (s), 1456 (m), 1336 (m), 1229 (s), 1139 (s), 1053 (m), 772 (m). MS (EI, 70 eV): m/z (%)=172 (M⁺, 15), 127 (27), 112 (18), 100 (37), 85 (56), 70 (100), 53 (20), 39 (40), 29 (21). Anal. Calcd for C₇H₈O₅ (172.14): C, 48.84; H, 4.68. Found: C, 49.01; H, 4.81.

3.2.2. Ethyl 2,5-dihydro-4-hydroxy-2-methyl-5-oxofuran-3-carboxylate (3b). Starting with 2b (0.41 g, 1.50 mmol), CH₂Cl₂ (15 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.50 mmol), 3b was isolated by column chromatography (n-hexane/Et₂O=1:1) as a slightly yellow oil (0.151 g, 54%). Reaction time: 17 h. ¹H NMR (CDCl₃, 300 MHz): δ =1.34 (t, 3H, ³J=7.1 Hz, OCH₂CH₃), 1.57 (d, 3H, ${}^{3}J=6.5$ Hz, CH₃), 4.33–4.44 (m, 2H, CH₂), 5.10 (q, 1H, ${}^{3}J=6.5$ Hz, CH), 8.75 (br s, 1H, OH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ=14.2 (OCH₂CH₃), 19.6 (CH₃), 62.0 (CH₂), 74.79 (CH), 120.14 (C), 152.19 (COH), 164.64 (CO), 165.55 (CO₂CH₂CH₃). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3328 (w), 2985 (m), 2938 (w), 2876 (w), 1781 (s), 1709 (s), 1443 (m), 1332 (m), 1225 (s), 1184 (s), 1102 (m), 1052 (m), 923 (w), 769 (w). UV-vis (MeCN, nm): λ (log ε)= 205.51 (3.49), 251.03 (4.04). MS (EI, 70 eV): m/z (%)=186 ([M]⁺, 1.5), 187 (1.5), 141 (85), 130 (15), 112 (78), 99 (48), 86 (50), 70 (100), 53 (12), 43 (66), 29 (57). Anal. Calcd for C₈H₁₀O₅: C, 51.61; H, 5.41. Found: C, 51.2; H, 5.82.

3.2.3. Ethyl 2-ethyl-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3c). Starting with **2c** (322 mg, 1.11 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.55 mL, 1.10 mmol), 3c was isolated by column chromatography (n-hexane/Et₂O=1:1) as a slightly brown oil (170 mg, 77%); R_f 0.50 (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (300 MHz, CDCl₃): δ =0.97 (t, ³J=7.3 Hz, 3H, CHCH₂CH₃), 1.38 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.62–1.76 (m, 1H, CHCH_AH_B), 2.10–2.23 (m, 1H, CHCH_A H_B), 4.39 (m, 2H, OCH₂), 5.09 (dd, ³ J_1 =7.3 Hz, ${}^{3}J_{2}$ =3.2 Hz, 1H, CH), 8.78 (br, 1H, OH). ${}^{13}C$ NMR (150 MHz, CDCl₃): δ=8.2, 14.0 (CH₃), 26.0 (CHCH₂), 61.9 (OCH₂), 79.1 (CH), 118.4 (CCH), 152.1 (COH), 164.4. 165.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3326 (br. s). 2980 (s), 2939 (m), 1781 (s), 1703 (s), 1447 (s), 1379 (m), 1303 (s), 1224 (s), 1184 (s), 1137 (s), 1083 (m), 771 (m), MS (EI, 70 eV): m/z (%)=200 (M⁺, 33), 155 (47), 143 (72), 114 (100), 70 (85), 29 (99). HRMS (EI, 70 eV): calcd for C₉H₁₂O₅ (M⁺) 200.06792; found 200.06746.

3.2.4. tert-Butyl 2,5-dihydro-4-hydroxy-2-ethyl-5-oxofuran-3-carboxylate (3d). Starting with 2d (0.52 g, 1.50 mol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.55 mL, 1.10 mmol), 3d was isolated by column chromatography (n-hexane/Et₂O=1:1) as a slightly brown oil (0.110 g, 32%); R_f 0.50 (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.94$ (t, 3H, ${}^{3}J=7.4$ Hz, CH₂CH₃), 1.57 (s, 9H, CH₃), 1.60–1.80 (m, 1H, $CH_{A}H_{B}$), 2.14 (sextd, 1H, ³J=7.4, 3.2 Hz, $CH_{A}H_{B}$), 5.05 (dd, 1H, ${}^{3}J=3.2$, 7.1 Hz, CH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ=8.2 (CH₂CH₃), 25.9 (CH₂CH₃), 28.0 (CH₃), 79.1 (CH), 84.2 (C(CH₃)₃), 119.7 (C), 152.1 (COH), 164.1 (CO), 166.0 (CO₂-t-Bu). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3404 (w), 2978 (w), 1782 (m), 1688 (m), 1440 (w), 1372 (w), 1239 (w), 1149 (m), 1081 (w), MS (EI, 70 eV): m/z (%)=228 ([M]⁺, 1), 184 (1), 155 (7), 142 (1), 127 (5), 108 (1), 77 (1), 59 (2), 57 (22), 28 (100). A correct elemental analysis or HRMS data could not be obtained, due to decomposition.

3.2.5. Ethyl 2,5-dihydro-4-hydroxy-2-propyl-5-oxofuran-3-carboxylate (3e). Starting with 2e (0.442 g, 1.5 mmol), CH₂Cl₂ (15 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.5 mmol), 3e was isolated by column chromatography (n-hexane/Et₂O=1:1) as a slightly brown oil $(0.227 \text{ g}, 71\%); R_f 0.50$ (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.96$ (t, 3H, ³J= 7.3 Hz, CH₃), 1.38 (t, 3H, ³J=7.1 Hz, OCH₂CH₃), 1.43–1.49 $(m, 2H, CH_2CH_3), 1.53-1.63$ $(m, 1H, CH_AH_BCH_2CH_3),$ 2.04-2.15 (m, 1H, CH_ACH_BCH₂CH₃), 4.30-4.45 (m, 2H, OCH_2CH_3), 5.11 (dd, 1H, ${}^3J=3$, 8.1 Hz, CH), 8.78 (br s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =13.7 (CH₃), 14.1 (OCH₂CH₃), 17.8 (CH₂CH₃), 35.2 (CH₂CH₂CH₃), 61.9 (OCH₂CH₃), 78.1 (CH), 118.2 (C), 152.2 (COH), 164.6 (CO), 165.7 (CO₂CH₂CH₃). IR (KBr, cm^{-1}): $\tilde{\nu}$ =2977 (m), 2934 (m), 2865 (m), 1781 (w), 1742 (w), 1710 (w), 1447 (m), 1383 (m), 1238 (w), 1126 (s), 1044 (w), 795 (w). MS (EI, 70 eV): m/z (%)=215 ([M+1⁺], 2), 214 ([M]⁺, 8), 169 (28), 143 (48), 123 (11), 113 (48), 86 (20), 70 (41), 43 (43), 28 (100). Anal. Calcd for C₁₀H₁₄O₅: C, 56.07; H, 6.59. Found: C, 56.34; H, 7.13.

3.2.6. Ethyl 4-hydroxy-2-isopropyl-5-oxo-2,5-dihydrofuran-3-carboxylate (**3f**). Starting with **2f** (287 mg, 0.94 mmol), CH_2Cl_2 (10 mL), and oxalyl chloride (2.0 M in CH_2Cl_2 , 0.47 mL, 0.94 mmol), **3f** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow solid (109 mg, 54%). Mp 52–54 °C; R_f 0.38 (tailing; Et₂O). Reaction time: 16 h. ¹H NMR (300 MHz, CDCl₃): δ =0.72 (d, ³*J*=6.9 Hz, 3H, CHC*H*₃), 1.18 (d, ³*J*=7.0 Hz, 3H, CHC*H*₃), 1.38 (t, ³*J*=7.1 Hz, 3H, OCH₂C*H*₃), 2.39 (m, 1H, CH(CH₃)₂), 4.38 (m, 2H, OCH₂), 5.06 (d, ³*J*=2.5 Hz, 1H, OCH), 8.2 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =13.7, 14.0 (OCH₂CH₃, CHCH₃), 19.4 (CHCH₃), 30.0 (CH(CH₃)₂), 61.9 (OCH₂), 82.2 (OCH), 117.8 (CCH), 152.4 (COH), 164.6, 166.1 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3332 (m), 2976 (m), 1786 (s), 1693 (s), 1440 (m), 1377 (m), 1303 (m), 1222 (s), 1185 (m), 1123 (m), 1000 (m). MS (EI, 70 eV): *m/z* (%)=214 (M⁺, 18), 172 (100), 144 (36), 126 (49), 114 (28), 70 (32), 43 (38). Anal. Calcd for C₁₀H₁₄O₅ (214.22): C, 56.07; H, 6.59. Found: C, 56.25; H, 6.75.

3.2.7. Ethyl 2-butyl-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3g). Starting with 2g (322 mg, 1.01 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.50 mL, 1.00 mmol), 3g was isolated by column chromatography (*n*-hexane/ $Et_2O=1:1$) as a slightly orange solid (173 mg, 75%). Mp=40 °C; $R_f 0.45$ (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (300 MHz, CDCl₃): δ =0.91 (t, ³J= 7.1 Hz, 3H, CH₂CH₂CH₃), 1.25–1.45 (m, 7H, OCH₂CH₃, $CH_2CH_2CH_3$), 1.50–1.70 (m, 1H, $CHCH_AH_B$), 2.00–2.20 (m, 1H, CHCH_AH_B), 4.39 (m, 2H, OCH₂), 5.11 (dd, ${}^{3}J_{1}$ =7.9 Hz, ${}^{3}J_{2}$ =2.9 Hz, 1H, CH), 8.1 (br, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ =13.7, 14.1 (CH₃), 22.2, 26.3, 32.7 (CH₂), 61.9 (OCH₂), 78.3 (CH), 118.7 (CCH), 152.1 (COH), 164.5, 165.9 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3330 (br, w), 2960 (m), 2935 (m), 2870 (w), 1780 (s), 1708 (s), 1662 (m), 1443 (m), 1378 (w), 1336 (m), 1301 (m), 1226 (m), 1183 (m), 1138 (m), 1103 (m), 1018 (w), 770 (w). MS (EI, 70 eV): *m/z* (%)=228 (M⁺, 3), 183 (43), 172 (25), 143 (100), 126 (33), 114 (92), 113 (89), 97 (46), 86 (52), 70 (71), 41 (60), 29.0 (90), 28 (47), 27 (47). Anal. Calcd for C₁₁H₁₆O₅ (228.24): C, 57.88; H, 7.07. Found: C, 57.52; H, 7.12.

3.2.8. tert-Butyl 2-butyl-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3h). Starting with 2h (674 mg, 1.94 mmol), CH₂Cl₂ (20 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.97 mL, 1.94 mmol), **3h** was isolated by column chromatography (*n*-hexane/ $Et_2O=4:1$) as a slightly brown oil (104 mg, 21%); R_f 0.59–0.77 (tailing; Et₂O). Reaction time: 22 h. ¹H NMR (300 MHz, CDCl₃): δ =0.91 (m, 3H, CH₂CH₃), 1.25–1.50 (m, 4H, CH₂CH₂CH₃), 1.57 (s, 9H, C(CH₃)₃), 1.59–1.70 (m, 1H, CHCH_AH_B), 2.03–2.15 (m, 1H, CHCH_A H_B), 5.06 (dd, ${}^{3}J_1$ =7.7 Hz, ${}^{3}J_2$ =2.9 Hz, 1H, CH), 8.7 (br, 1H, OH). ${}^{13}C$ NMR (62 MHz, CDCl₃): δ=13.7 (CH₂CH₃), 22.1, 26.1 (CH₂), 28.0 (C(CH₃)₃), 32.4 (CH₂), 78.3 (OCH), 84.1 (C(CH₃)₃), 120.1 (CCH), 151.9 (COH), 164.1, 165.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3327 (br, s), 2960 (s), 2933 (s), 2874 (s), 1786 (s), 1685 (s), 1458 (m), 1371 (s), 1237 (s), 1151 (s), 771 (m). MS (CI, isobutane): m/z (%)=257 ([M+1]⁺, 19), 202 (21), 201 (100), 157 (11).

3.2.9. Ethyl 4-hydroxy-2-isobutyl-5-oxo-2,5-dihydrofuran-3-carboxylate (**3i**). Starting with **2i** (306 mg, 0.96 mmol), CH_2Cl_2 (10 mL), and oxalyl chloride (2.0 M in CH_2Cl_2 , 0.48 mL, 0.96 mmol), **3i** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a colorless solid

12551

(138 mg, 63%). Mp 99–100 °C; R_f 0.38 (tailing; Et₂O). Reaction time: 16 h. ¹H NMR (300 MHz, CDCl₃): δ =0.97 (d, ${}^{3}J=6.4$ Hz, 3H, CHCH₃), 1.01 (d, ${}^{3}J=6.2$ Hz, 3H, CHCH₃), 1.38 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.46 (m, 1H, CH_AH_BCH), 1.85–2.00 (m, 2H, CH_AH_BCH(CH₃)₂), $^{3}J_{1}=9.9$ Hz, 4.39 (m, 2H, OCH₂CH₃), 5.13 (dd, ${}^{3}J_{2}$ =2.0 Hz, 1H, CH), 8.7 (br, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ =14.0 (OCH₂CH₃), 21.6, 23.4, 24.8 (CH(CH₃)₂), 42.5 (CHCH₂), 61.8 (OCH₂), 77.0 (OCH), 119.3 (CCH), 151.8 (COH), 164.5, 165.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3276 (br, w), 2958 (m), 1747 (s), 1710 (s), 1676 (w), 1464 (w), 1344 (w), 1299 (m), 1218 (m), 1190 (m), 1144 (w). MS (EI, 70 eV): m/z (%)=228 (M⁺, 2), 184 (40), 172 (72), 143 (100), 126 (50), 114 (93), 86 (42), 70 (68), 41 (81), 29 (77). Anal. Calcd for C₁₁H₁₆O₅ (228.24): C, 57.88; H, 7.07. Found: C, 58.16; H, 7.43.

3.2.10. Methyl 2-*tert*-butyl-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3j). Starting with 2j (4.07 g, 13.4 mmol), CH₂Cl₂ (100 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 6.68 mL, 13.4 mmol), **3j** was isolated by column chromatography (*n*-hexane/Et₂O=2:1 \rightarrow 1:1) as an orange oil (1.01 g, 35%); *R_f* 0.18–0.37 (tailing; Et₂O). Reaction time: 15 h. ¹H NMR (300 MHz, CDCl₃): δ =0.99 (s, 9H, C(CH₃)₃), 3.90 (s, 3H, OCH₃), 4.93 (s, 1H, CH), 7.3 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =25.8 (C(CH₃)₃), 36.5 (*C*(CH₃)₃), 52.4 (OCH₃), 85.5 (OCH), 117.6 (*C*=COH), 153.2 (COH), 165.5, 165.6 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3348 (br, w), 2966 (m), 1776 (s), 1724 (s), 1654 (m), 1456 (m), 1324 (m), 1231 (s), 1180 (m), 1128 (m), 1019 (w), 979 (w), 773 (w). MS (EI, 70 eV): *m/z* (%)=214 (M⁺, 0.53), 158 (100), 126 (22), 70 (33), 57 (98), 29 (27).

3.2.11. Methyl 2-hexyl-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3k). Starting with 2k (377 mg, 1.13 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.57 mL, 1.14 mmol), 3k was isolated by column chromatography (*n*-hexane/ $Et_2O=1:1$) as a slightly yellow solid (168 mg, 61%). Mp 73–74 °C; R_f 0.42 (tailing; Et₂O). Reaction time: 15 h. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, ³*J*=6.6 Hz, 3H, CH₂CH₃), 1.18–1.49 (m, 8H, (CH₂)₄CH₃), 1.52–1.67 (m, 1H, CHCH_AH_B), 2.05–2.18 (m, 1H, CHCH_AH_B), 3.92 (s, 3H, OCH₃), 5.11 (dd, ${}^{3}J_{1}$ =8.1 Hz, ${}^{3}J_{2}$ =2.8 Hz, 1H, CH), 8.38 (br, 1H, OH). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 13.8$ (CH₂CH₃), 22.3, 24.2, 28.7, 31.4, 33.0 (CH₂), 52.4 (OCH₃), 78.4 (OCH), 118.3 (CCH), 151.6 (COH), 164.6, 166.1 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3321 (s), 2925 (s), 2857 (m), 1788 (s), 1699 (s), 1456 (m), 1343 (m), 1309 (m), 1220 (s), 1115 (m), 994 (w), 772 (w). MS (EI, 70 eV): m/z (%)=242 (M⁺, 2), 186 (37), 158 (82), 129 (100), 100 (72), 70 (28). Anal. Calcd for C₁₂H₁₈O₅ (242.27): C, 59.49; H, 7.49. Found: C, 59.68; H, 7.66.

3.2.12. Ethyl 2,5-dihydro-4-hydroxy-5-oxo-2-vinylfuran-3-carboxylate (3l). Starting with **2l** (0.432 g, 1.5 mmol), CH₂Cl₂ (15 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.5 mmol), **3l** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow oil (0.100 g, 34%). Reaction time: 15 h. ¹H NMR (CDCl₃, 300 MHz): δ =1.35 (t, 3H, ³J=7.1 Hz, -CH₃), 4.35 (m, 2H, CH₂), 5.39 (dt, 1H, ⁴J=1.0 Hz, ³J=10.2 Hz, CH), 5.47 (dt, 1H, ⁴J=1.0 Hz, ³J=6.5 Hz, CHCHCH_{Acis}H_{Btrans}), 5.53 (dt, 1H, ${}^{4}J$ =1.0 Hz, ${}^{3}J$ =17.0 Hz, CHCHCH_{Acis}H_{Btrans}), 5.778 (m, 1H, CHCHCH₂), 8.78 (br s, 1H, OH). 13 C NMR (CDCl₃, 75 MHz): δ =14.2 (CH₃), 62.0 (CH₂), 78.1 (CHCHCH₂), 118.0 (C), 120.3 (CHCHCH₂), 131.6 (CHCHCH₂), 152.0 (COH), 164.5 (CO), 165.4 (CO₂Et). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2984 (w), 1782 (s), 1708 (s), 1665 (m), 1442 (w), 1379 (w), 1307 (m), 1224 (m), 1126 (m), 1011 (w), 941 (w). MS (EI, 70 eV): *m*/*z* (%)=198 ([M]⁺, 7), 170 (12), 152 (34), 142 (16), 125 (63), 107 (79), 97 (42), 80 (44), 55 (25), 43 (14), 28 (100).

3.2.13. Ethyl 2-(9-decenyl)-4-hydroxy-5-oxo-2.5-dihydrofuran-3-carboxvlate (3m). Starting with 2m (374 mg. 0.93 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.42 mL, 0.84 mmol), **3m** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow oil (216 mg, 83%). Reaction time: 24 h. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.23 - 1.45$ (m, 15H, OCHCH₂(CH₂)₆, CH₃), 1.52–1.67 (m, 1H, OCHCH_AH_B), 1.97-2.16 (m, 3H, H₂C=CHCH₂, OCHCH_AH_B), 4.37 (m, 2H, OCH₂), 4.89–5.02 (m, 2H, $H_2C=CH$), 5.09 (dd, ${}^{3}J_1=7.8$ Hz, ${}^{3}J_2=2.9$ Hz, 1H, OCH), 5.80 (ddt, ${}^{3}J_1=$ 17.0 Hz, ${}^{3}J_{2}$ =10.3 Hz, ${}^{3}J_{3}$ =6.7 Hz, 1H, H₂C=CH), 8.70 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =14.1 (CH₃), 24.3, 28.8, 29.0, 29.1, 29.2, 29.3, 33.0, 33.7 (OCH(CH₂)₈), 61.9 (OCH₂), 78.3 (OCH), 114.1 (H₂C=CH), 118.9 (CCH), 139.1 (H₂C=CH), 152.2 (COH), 164.6, 165.7 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3393 (br, s), 2980 (m), 2924 (s), 2854 (s), 1784 (s), 1748 (s), 1710 (s), 1669 (m), 1467 (m), 1300 (m), 1218 (s), 1190 (s), 776 (m). MS (CI, isobutane): m/z (%)=311 ([M+1]⁺, 100), 265 (49). Anal. Calcd for C₁₇H₂₆O₅ (310.39): C, 65.78; H, 8.44. Found: C, 65.82; H, 8.65.

3.2.14. Methyl 2-benzyl-2,5-dihydro-4-hydroxy-5-oxofuran-3-carboxylate (3n). Starting with 2n (0.49 g, 1.50 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.5 mmol), **3n** was isolated by column chromatography (*n*-hexane/ $Et_2O=1:1$) as a slightly yellow oil (0.148 g, 38%). Reaction time: 24 h. ¹H NMR (CDCl₃, 300 MHz): $\delta = 3.02$ (dd, 1H, ³J=6.2 Hz, ²J=14.5 Hz, CH_ACH_B), 3.42 (dd, 1H, ³J=3.3 Hz, ²J=14.5 Hz, CH_ACH_B), 3.96 (s, 1H, OCH₃), 5.34 (dd, 1H, ³J=6.23, 3.38 Hz, CH), 7.95–7.15 (m, 2H, Ar), 7.19–7.31 (m, 3H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ=38.7 (CH₂), 52.6 (OCH₃), 77.9 (CH), 117.5 (C), 127.2 (Ar), 128.5 (Ar), 129.5 (Ar), 134.2 (Ar), 152.3 (COH), 164.5 (CO), 165.4 (CO₂Me). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3400 (m), 2979 (w), 1777 (s), 1713 (s), 1660 (m), 1515 (w), 1455 (m), 1341 (w), 1224 (m), 1172 (m), 1123 (m), 1044 (w), 771 (w). MS (EI, 70 eV): m/z $(\%)=248 ([M]^+, 11), 278 (2), 223 (1), 205 (1), 177 (2),$ 160 (3), 114 (6), 91 (100), 66 (8).

3.2.15. Ethyl 4-hydroxy-5-oxo-2-phenyl-2,5-dihydrofuran-3-carboxylate (30). Starting with **2o** (314 mg, 0.93 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.46 mL, 0.92 mmol), **3o** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow solid (143 mg, 62%). Mp 105 °C; R_f 0.25 (tailing; Et₂O). Reaction time: 17 h. ¹H NMR (300 MHz, CDCl₃): δ =1.16 (t, ³*J*=7.1 Hz, 3H, CH₃), 4.21 (q, ³*J*=7.1 Hz, 2H, OCH₂), 6.00 (s, 1H, OCH), 7.26–7.31 (m, 2H, Ph), 7.35–7.40 (m, 3H, Ph), 8.87 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ=13.8 (CH₃), 61.8 (OCH₂), 79.4 (OCH), 118.9 (*C*=COH), 127.2, 128.7, 129.6 (CH_{Ar}), 134.2 (C_{Ar}), 152.0 (COH), 164.3, 165.7 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3300 (br, m), 2992 (w), 1749 (s), 1715 (s), 1674 (m), 1456 (w), 1319 (m), 1207 (s), 1179 (s), 1127 (m), 998 (m). MS (EI, 70 eV): *m*/*z* (%)=248 (M⁺, 33), 203 (21), 175 (16), 158 (41), 130 (59), 105 (39), 77 (47), 28 (100). Anal. Calcd for C₁₃H₁₂O₅ (248.23): C, 62.90; H, 4.87. Found: C, 62.82; H, 4.93.

3.2.16. Ethyl 4-hydroxy-2-(4-methylphenyl)-5-oxo-2.5dihydrofuran-3-carboxylate (3p). Starting with 2p (337 mg, 0.96 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.45 mL, 0.90 mmol), and recrystallization from a mixture of CH₂Cl₂ (3 mL) and *n*-hexane (25 mL) at -24 °C yielded **3p** as a slightly brown solid (159 mg, 67%); mp 113-114 °C. Reaction time: 24 h. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.18$ (t, ³J=7.1 Hz, 3H, CH₂CH₃), 2.36 (s, 3H, ArCH₃), 4.21 (m, 2H, OCH₂), 5.98 (s, 1H, OCH), 7.17 (s, 4H, Ar), 8.8 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.8$ (CH₂CH₃), 21.2 (ArCH₃), 61.9 (OCH₂), 79.3 (OCH), 118.9 (C=COH), 127.2, 129.4 (CH_{Ar}), 131.2, 139.6 (C_{Ar}), 152.0 (COH), 164.4, 165.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3316 (br, m), 2997 (m), 1753 (s), 1744 (s), 1716 (s), 1671 (s), 1460 (m), 1318 (s), 1201 (s), 1174 (s), 992 (s), 775 (m). MS (EI, 70 eV): m/z (%)=262 (M⁺, 49), 217 (28), 189 (25), 145 (58), 144 (100), 121 (56), 119 (80), 117 (54), 116 (36), 115 (71), 91 (66), 44 (70). Anal. Calcd for C₁₄H₁₄O₅ (262.26): C, 64.12; H, 5.38. Found: C, 63.97; H, 5.22.

3.2.17. Ethyl 2.5-dihydro-4-hydroxy-2-(4'-methoxyphenyl)-5-oxofuran-3-carboxylate (3q). Starting with 2q (0.55 g, 1.50 mmol), CH₂Cl₂ (15 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.5 mmol), **3q** was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow solid (0.134 g, 32%); mp 97.6-100.3 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.18$ (t, 3H, ³J=7.1 Hz, CH₃), 3.82 (s, 3H, OCH₃), 4.21 (q, 2H, CH₂), 5.97 (s, 1H, CH), 6.89 (dd, 2H, ${}^{3}J=6.8$ Hz, ${}^{4}J=1.9$ Hz, Ar), 7.20 (dd, 2H, ³*J*=6.7 Hz, ⁴*J*=2 Hz, Ar), 8.78 (br s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =13.9 (CH₃), 55.3 (OCH₃), 61.8 (CH₂), 79.2 (CH), 114.1 (C), 118.8 (Ar), 126.1 (Ar), 128.7 (Ar), 152.1 (COH), 160.6 (Ar), 164.5 (CO), 165.7 (CO₂Et). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3299 (w), 1742 (s), 1676 (m), 1612 (w), 1515 (w), 1460 (w), 1315 (s), 1256 (m), 1174 (s), 1126 (w), 1024 (w), 992 (m), 838 (w). MS (EI, 70 eV): m/z (%)=278 ([M]⁺, 45), 279 (3), 233 (19), 205 (14), 178 (11), 160 (100), 117 (21), 89 (36), 77 (25), 28 (63). Anal. Calcd for C₁₄H₁₄O₆: C, 60.43; H, 5.07. Found: C, 60.05; H, 5.10.

3.2.18. Methyl 2,5-dihydro-4-hydroxy-5-oxo-2-*ortho*-tolylfuran-3-carboxylate (3r). Starting with 2q (0.49 g, 1.50 mmol), CH₂Cl₂ (15 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.75 mL, 1.5 mmol), 3r was isolated by column chromatography (*n*-hexane/Et₂O=1:1) as a slightly yellow oil (0.172 g, 49%). ¹H NMR (CDCl₃, 300 MHz): δ =2.50 (s, 3H, ArCH₃), 3.75 (s, 3H, OCH₃), 6.32 (s, 1H, Ar), 6.97 (dd, 1H, ³J=8.3 Hz, ⁴J=0.6 Hz, Ar), 6.98–7.29 (m, 3H, Ar), 8.77 (br s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =19.0 (*C*H₃), 52.5 (OCH₃), 76.2 (*C*H), 118.1 (*C*), 126.3 (Ar), 126.3 (Ar), 129.6 (Ar), 131.0 (Ar), 132.1 (Ar), 137.5 (Ar), 152.4 (COH), 164.7 (CO), 165.8 (CO₂Me). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3366 (w), 1776 (s), 1727 (s), 1666 (w), 1460 (w), 1315 (m), 1208 (s), 1172 (m), 1129 (m), 1006 (w), 772 (w). MS (EI, 70 eV): *m*/*z* (%)=248 ([M]⁺, 23), 216 (5), 203 (39), 171 (52), 144 (34), 115 (78), 114 (100), 91 (78), 66 (20), 28 (15). Anal. Calcd for C₁₃H₁₂O₅: C, 62.9; H, 4.87. Found: C, 62.82; H, 4.98.

3.2.19. Ethyl 4-hydroxy-2-(2-methoxyphenyl)-5-oxo-2,5dihydrofuran-3-carboxylate (3s). Starting with 2s (317 mg, 0.86 mmol), CH₂Cl₂ (10 mL), and oxalvl chloride (2.0 M in CH₂Cl₂, 0.41 mL, 0.82 mmol), and recrystallization from a mixture of CH_2Cl_2 (2.5 mL) and *n*-hexane (25 mL) at -24 °C yielded **2s** as a slightly brown solid (137 mg, 60%); mp 111-112 °C. Reaction time: 24 h. ¹H NMR (250 MHz, CDCl₃): δ =1.13 (t, ³*J*=7.1 Hz, 3H, CH₂CH₃), 3.83 (s, 3H, OCH₃), 4.19 (q, ³*J*=7.1 Hz, 2H, OCH₂), 6.36 (s, 1H, OCH), 6.89-6.96 (m, 2H, Ar), 7.06-7.10 (m, 1H, Ar), 7.31–7.38 (m, 1H, Ar), 8.9 (br, 1H, OH). ¹³C NMR (75 MHz, CDCl₃): δ =13.8 (CH₂CH₃), 55.7 (OCH₃), 61.6 (OCH₂), 75.3 (OCH), 111.3 (CH_{Ar}), 118.2 (C), 120.5 (CH_{Ar}), 122.0 (C), 128.7, 131.0 (CH_{Ar}), 152.6, 158.1, 164.7, 166.1 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3272 (s), 2979 (m), 2939 (w), 1787 (s), 1749 (s), 1704 (s), 1690 (s), 1602 (m), 1496 (m), 1234 (s), 1186 (s), 761 (m). MS (EI, 70 eV): m/z (%)=278 (M⁺, 100), 233 (68), 188 (37), 161 (59), 135 (63), 131 (85), 44 (66). Anal. Calcd for C₁₄H₁₄O₆ (278.26): C, 60.43; H, 5.07. Found: C, 60.73; H, 5.29.

3.2.20. Ethyl 2-(4-chlorophenyl)-4-hydroxy-5-oxo-2,5-dihydrofuran-3-carboxylate (3t). Starting with 2t (336 mg. 0.90 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.41 mL, 0.82 mmol), and recrystallization from a mixture of CH₂Cl₂ (5 mL) and *n*-hexane (20 mL) at -24 °C yielded **3t** as a slightly brown solid (99 mg, 43%); mp 115-116 °C. Reaction time: 24 h. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.19$ (t, ³J=7.1 Hz, 3H, CH₃), 4.22 (q, ³*J*=7.1 Hz, 2H, OCH₂), 5.97 (s, 1H, OCH), 7.18–7.27 (m, 2H, Ar), 7.32–7.39 (m, 2H, Ar), 8.90 (br, 1H, OH). ¹³C NMR (62 MHz, CDCl₃): $\delta = 13.8$ (CH₃), 61.9 (OCH₂), 78.6 (OCH), 118.4 (C=COH), 128.6, 128.9 (CH_{Ar}), 132.9, 135.5 (CAr), 152.0 (COH), 164.0, 165.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3363 (br, s), 2999 (m), 1749 (s), 1713 (s), 1672 (s), 1496 (m), 1318 (s), 1202 (s), 1178 (s), 997 (s), 835 (m). Anal. Calcd for C₁₃H₁₁ClO₅ (282.68): C, 55.24; H, 3.92. Found: C, 55.28; H, 4.30.

3.2.21. Ethyl 4-hydroxy-2,2-dimethyl-5-oxo-2,5-dihydrofuran-3-carboxylate (**3u**). Starting with **2u** (291 mg, 1.00 mmol), CH₂Cl₂ (10 mL), and oxalyl chloride (2.0 M in CH₂Cl₂, 0.50 mL, 1.00 mmol), **3u** was isolated by column chromatography (*n*-heptane/Et₂O=1:1) as a slightly yellow solid (43 mg, 21%). Mp 61–62 °C; R_f 0.22 (tailing; Et₂O). Reaction time: 22 h. ¹H NMR (250 MHz, CDCl₃): δ =1.38 (t, ³*J*=7.1 Hz, 3H, CH₂CH₃), 1.59 (s, 6H, C(CH₃)₂), 4.38 (q, ³*J*=7.1 Hz, 2H, CH₂), 7.0 (br, 1H, OH). ¹³C NMR (62 MHz, CDCl₃): δ =14.1 (CH₂CH₃), 25.9 (C(CH₃)₂), 61.9 (OCH₂), 83.4 (OC(CH₃)₂), 123.3 (*C*=COH), 151.7 (COH), 164.6, 165.0 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3314 (br, s), 2981 (m), 1747 (s), 1707 (s), 1664 (s), 1448 (m), 1368 (m), 1315 (s), 1249 (s), 1182 (s), 1128 (s), 1065 (s), 986 (m), 772 (m). MS (EI, 70 eV): *m/z* (%)=200 (M⁺, 24), 185 (20), 157 (31), 155 (42), 129 (28), 100 (33), 86 (60), 84 (100), 69 (30), 49 (62). HRMS (EI, 70 eV): calcd for $C_9H_{12}O_5$ (M⁺) 200.06792; found 200.06864.

3.2.22. Determination of the enantiomeric excess of (R)**-3a.** The enantiomeric excess (ee) was determined by HPLC on an analytical column (CHIRALCEL OD-H). Conditions: hexane/ethanol=95:5+0.1% CF₃COOH (0.5 mL/min). Maxima after 20.61/22.50/22.74 min.

3.3. General procedure for the preparation of triflates 4a–f

To a CH₂Cl₂ solution of the appropriate isotetronic acids **3f**,**g**,**i**–**o** was added pyridine. After stirring for 15 min the solution was cooled to -78 °C and Tf₂O was added. The reaction mixture was allowed to warm to 0 °C within 90–120 min and the reaction mixture was directly purified (without aqueous work-up) by column chromatography (silica gel) to give the triflates **4a–f**.

3.3.1. Ethyl 2,5-dihydro-2-isopropyl-4-trifluormethanesulfonyloxy-5-oxofuran-3-carboxylate (4a). Starting with **3f** (0.161 g, 0.752 mmol), CH₂Cl₂ (100 mL), pyridine (0.118 g, 1.53 mmol), and Tf₂O (0.318 g, 1.127 mmol), 4a was isolated as a yellow liquid (0.237 g, 91%); R_f 0.78 (CH₂Cl₂). After stirring for 120 min, the reaction mixture (temperature: -5 °C) was purified by column chromatography (CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ =0.76 (d, 3H, ${}^{3}J=6.9$ Hz, CH_{3}), 1.21 (d, 3H, ${}^{3}J=7.0$ Hz, CH_{3}), 1.40 (t, 3H, ${}^{3}J=7.1$ Hz, CH₂CH₃), 2.54 (septd, 1H, ${}^{3}J=7.0$, 2.6 Hz, $CH(CH_3)_2$), 4.41 (q, 2H, ${}^{3}J=7.1$ Hz, CH_2CH_3), 5.22 (d, 1H, ${}^{3}J=2.6$ Hz, CH). ${}^{13}C$ NMR (CDCl₃, 75 MHz): $\delta = 13.8$ (CH₃), 13.8 (CH₂CH₃), 19.4 (CH₃), 30.4 (CH(CH₃)₂), 63.2 (CH₂CH₃), 83.2 (CH), 118.3 (q, ${}^{1}J_{C-F}$ =321 Hz, CF₃), 137.8 (C), 141.43 (COS), 158.74 (CO), 163.4 (CO₂Et). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3438 (m), 2977 (w), 1796 (s), 1735 (s), 1676 (w), 1439 (s), 1385 (w), 1218 (s), 1131 (s), 1011 (w), 753.86 (w), 609 (m). MS (EI, 70 eV): m/z (%)=304 ([M⁺, C₃H₃], 6), 222 (5), 171 (19), 143 (100), 114 (59), 70 (50), 43 (56), 29 (35). Anal. Calcd for C₁₁H₁₃F₃O₇S: C, 38.15; H, 3.78. Found: C, 38.37; H, 3.60.

3.3.2. Ethyl 2-butyl-5-oxo-4-trifluoromethanesulfonyloxy-2,5-dihydrofuran-3-carboxylate (4b). Starting with **3g** (1.16 g, 5.10 mmol), CH_2Cl_2 (100 mL), pyridine (1.03 g, 13.0 mmol), and Tf₂O (1.93 g, 6.84 mmol), 4b was isolated as a yellow liquid (1.54 g, 84%); R_f 0.78 (CH₂Cl₂). After stirring for 120 min, the reaction mixture (temperature: -5 °C) was purified by column chromatography (CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ =0.92 (m, 3H, $CH_2CH_2CH_3$), 1.25–1.50 (m, 7H, OCH_2CH_3 , CH₂CH₂CH₃), 1.70–1.85 (m, 1H, CHCH_AH_B), 2.15–2.28 (m, 1H, CHCH_AH_B), 4.42 (m, 2H, OCH₂), 5.30 (dd, ${}^{3}J_{1}$ =7.6 Hz, ${}^{3}J_{2}$ =3.2 Hz, 1H, OCH). 13 C NMR (75 MHz, CDCl₃): δ =13.6, 13.7 (CH₃), 22.1, 26.0, 32.0 ((CH₂)₃), 63.2 (OCH₂), 79.3 (OCH), 118.3 (q, ¹J_{CF}=321 Hz, CF₃), 137.7, 141.8 (C=C), 158.6, 163.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2964 (m), 2936 (m), 2877 (w), 1796 (s), 1735 (s), 1438 (s), 1254 (s), 1220 (s), 1135 (s), 608 (m). MS (EI, 70 eV): m/z (%)=361 ([M+1]⁺, 0.4), 304 (5), 143 (100). HRMS (EI, 70 eV): calcd for $C_{12}H_{16}F_3O_7S$ ([M+1]⁺) 361.05633; found 361.05555. Anal. Calcd for $C_{12}H_{15}F_3O_7S$ (360.30): C, 40.00; H, 4.20. Found: C, 40.34; H, 4.09.

3.3.3. Ethyl 2-isobutyl-5-oxo-4-trifluoromethanesulfonyloxy-2,5-dihydrofuran-3-carboxylate (4c). Starting with 3i (106 mg, 0.46 mmol), CH₂Cl₂ (10 mL), pyridine (95 mg, 1.2 mmol), and Tf₂O (205 mg, 0.73 mmol), 4c was isolated as a yellow oil (144 mg, 86%); $R_f 0.79$ (CH₂Cl₂). After stirring for 90 min, the reaction mixture (temperature: 12 °C) was purified by column chromatography (CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.99$ (d, ³J=6.4 Hz, 3H, CHCH₃), 1.03 (d, ${}^{3}J=6.3$ Hz, 3H, CHCH₃), 1.41 (t, ${}^{3}J=$ 7.2 Hz, 3H, OCH₂CH₃), 1.55 (m, 1H, CHCH_AH_B), 1.88-2.04 (m, 2H, $CH_AH_BCH(CH_3)_2$), 4.42 (m, 2H, OCH_2), 5.31 (dd, ${}^{3}J_{1}$ =9.9 Hz, ${}^{3}J_{2}$ =2.2 Hz, 1H, OCH). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ=13.8 (OCH₂CH₃), 21.4, 23.3, 24.9 (CH(CH₃)₂), 41.7 (CHCH₂), 63.2 (OCH₂), 78.2 (OCH), 118.3 (q, ¹*J*_{CF}=321 Hz, CF₃), 137.6, 142.4 (C=C), 158.7, 163.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2964 (m), 2876 (w), 1796 (s), 1735 (s), 1438 (s), 1254 (s), 1221 (s), 1134 (s), 1100 (m), 819 (m), 608 (m). MS (CI, isobutane): *m/z* (%)=361 ([M+1]⁺, 35).

3.3.4. Methyl 2-tert-butyl-5-oxo-4-trifluoromethanesulfonyloxy-2,5-dihydrofuran-3-carboxylate (4d). Starting with 3j (900 mg, 4.20 mmol), CH₂Cl₂ (100 mL), pyridine (831 mg, 10.5 mmol), and Tf₂O (1.42 g, 5.04 mmol), 4d was isolated as an orange oil (736 mg, 51%); R_f 0.76 (CH₂Cl₂). After stirring for 100 min, the reaction mixture (temperature: $0 \,^{\circ}$ C) was purified by column chromatography (CH_2Cl_2) . ¹H NMR (300 MHz, CDCl₃): $\delta = 1.02$ (s, 9H, C(CH₃)₃), 3.95 (s, 3H, OCH₃), 5.12 (s, 1H, OCH). ¹³C (75 MHz, CDCl₃): $\delta = 25.6$ (C(CH₃)₃), 36.7 NMR (*C*(CH₃)₃), 53.4 (OCH₃), 86.0 (OCH), 118.3 (q, ¹*J*_{CF}=321 Hz, CF₃), 137.3, 142.4 (C=C), 159.9, 162.8 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2971 (m), 2878 (w), 1798 (s), 1744 (s), 1438 (s), 1255 (s), 1225 (s), 1134 (s), 1107 (s), 609 (m). MS (EI, 70 eV): m/z (%)=347 ([M+1]⁺, 0.2). HRMS (EI, 70 eV): calcd for $C_{11}H_{14}F_{3}O_{7}S$ ([M+1]⁺) 347.04068; found 347.04000. Anal. Calcd for C₁₁H₁₃F₃O₇S (346.28): C, 38.15; H, 3.78. Found: C, 38.39; H, 3.78.

3.3.5. Methyl 2-hexyl-5-oxo-4-trifluoromethanesulfonyloxy-2,5-dihydrofuran-3-carboxylate (4e). Starting with **3j** (1.52 g, 6.27 mmol), CH_2Cl_2 (100 mL), pyridine (1.24 g, 15.7 mmol), and Tf₂O (2.12 g, 7.52 mmol), 4e was isolated as an orange liquid (1.81 g, 77%); R_f 0.80 (CH₂Cl₂). After stirring for 100 min, the reaction mixture (temperature: 0 °C) was purified by column chromatography (CH_2Cl_2) . ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, ${}^{3}J=6.8$ Hz, 3H, CH₂CH₃), 1.20–1.48 (m, 8H, (CH₂)₄CH₃), 1.77 (m, 1H, CHC H_AH_B), 2.12–2.27 (m, 1H, CHC H_AH_B), 3.96 (s, 3H, OCH₃), 5.31 (dd, ${}^{3}J_{1}$ =7.7 Hz, ${}^{3}J_{2}$ =3.2 Hz, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =13.9 (CH₂CH₃), 22.4, 23.9, 28.6, 31.4, 32.3 (CH₂), 53.2 (OCH₃), 79.2 (OCH), 118.3 (q, ${}^{1}J_{CF}=321$ Hz, CF₃), 138.1, 141.2 (C=C), 159.0, 163.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2960 (m), 2932 (m), 2861 (m), 1797 (s), 1740 (s), 1440 (s), 1255 (s), 1221 (s), 1134 (s), 608 (m). MS (EI, 70 eV): m/z (%)=375 $([M+1]^+, 0.2)$. HRMS (EI, 70 eV): calcd for $C_{13}H_{18}F_3O_7S$ ([M+1]⁺) 375.07198; found 375.07116. Anal. Calcd for C₁₃H₁₇F₃O₇S (374.33): C, 41.71; H, 4.58. Found: C, 42.15; H, 4.68.

3.3.6. Ethyl 5-oxo-2-phenyl-4-trifluoromethanesulfonyloxy-2,5-dihydrofuran-3-carboxylate (4f). Starting with **30** (62 mg, 0.25 mmol), CH₂Cl₂ (5 mL), pyridine (50 mg, 0.63 mmol), and Tf₂O (92 mg, 0.33 mmol), 4f was isolated as an orange solid (50 mg, 53%); $R_f 0.74$ (CH₂Cl₂). After stirring for 110 min, the reaction mixture (temperature: 5 °C) was purified by column chromatography (CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.27$ (t, ³J=7.2 Hz, 3H, CH₃), 4.28 (m, 2H, OCH₂), 6.20 (s, 1H, OCH), 7.28-7.34 (m, 2H, Ph), 7.39–7.47 (m, 3H, Ph). ¹³C NMR (75 MHz. CDCl₃): $\delta = 13.6$ (CH₃), 63.2 (OCH₂), 80.3 (OCH), 118.4 $(q, {}^{1}J_{CF}=321 \text{ Hz}, \text{ CF}_{3}), 127.4, 129.2, 130.4 (CH_{Ar}), 131.6,$ 137.7, 141.2 (C), 158.2, 163.3 (CO). IR (Nujol, cm⁻¹): $\tilde{\nu}$ =1785 (s), 1726 (s), 1258 (s), 1224 (s), 1153 (s), 1117 (s), 1005 (m), 813 (m), 761 (m), 608 (m). MS (EI, 70 eV): m/z (%)=380 (M⁺, 11), 105 (100), 77 (34), 69 (27). HRMS (EI, 70 eV): calcd for C₁₄H₁₁F₃O₇S (M⁺) 380.01721; found 380.01671. Anal. Calcd for C₁₄H₁₁F₃O₇S (380.29): C, 44.22; H, 2.92. Found: C, 44.53; H, 2.83.

3.4. General procedure for the synthesis of aryl-substituted isotetronic acids 5a-k

A mixture of triflates **4a–f**, K_3PO_4 , arylboronic acids, $Pd(PPh_3)_4$, and 1,4-dioxane was heated at 90–95 °C for 4–8 h. To the solution was added ether, the mixture was filtered, and the filtrate was concentrated in vacuo. The coupling products **5a–k** were isolated by column chromatography (silica gel).

3.4.1. Ethyl 2,5-dihydro-2-isopropyl-5-oxo-phenylfuran-3carboxvlate (5a). Starting with 4a (89.00 mg, 0.25 mmol). K_3PO_4 (85 mg, 0.4 mmol), phenylboronic acid (40 mg, 0.325 mmol), Pd(PPh₃)₄ (9 mg, 0.007 mmol), and 1,4-dioxane (4.0 mL), 5a was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=20:1) as a slightly yellow oil (41 mg, 63%); *R*_f 0.20 (*n*-hexane/EtOAc=10:1). Reaction time: 4 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.84 (d, 3H, ³*J*=6.9 Hz, CH_3), 1.21 (d, ${}^{3}J=7.3$ Hz, CH_3), 1.24 (t, 3H, ${}^{3}J=7.2$ Hz, CH_2CH_3), 2.38 (septd, 3H, ³J=2.9, 6.9 Hz, $CH(CH_3)_2$), 4.14–4.35 (m, 2H, CH_2CH_3), 5.21 (d, 1H, ${}^{3}J=2.9$ Hz, CH), 7.38–7.45 (m, 3H, Ar), 7.52–7.6 (m, 2H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =13.8 (CH₃), 14.5 (CH₂CH₃), 19.5 (CH₃), 30.7 (CH(CH₃)₂), 61.9 (CH₂CH₃), 84.9 (CH), 128.0 (Ar), 128.5 (Ar), 129.4 (Ar), 129.8 (Ar), 135.3 (C), 148.7 (CAr), 162.7 (CO₂Et), 171.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3405 (w), 3061 (w), 2968 (m), 2361 (w), 1765 (s), 1725 (s), 1494 (w), 1465 (m), 1374 (m), 1396 (m), 1294 (m), 1222 (s), 1176 (s), 1111 (w), 1011 (m), 957 (w), 783 (w), 696 (m). MS (EI, 70 eV): m/z (%)=274 ([M]⁺, 10), 232 (10), 229 (1), 186 (28), 175 (9), 146 (7.67), 129 (12), 103 (5), 77 (5), 57 (1), 28 (100).

3.4.2. Ethyl 2-butyl-5-oxo-4-phenyl-2,5-dihydrofuran-3carboxylate (5b). Starting with **4b** (215 mg, 0.60 mmol), K₃PO₄ (190 mg, 0.90 mmol), phenylboronic acid (100 mg, 0.82 mmol), Pd(PPh₃)₄ (21 mg, 0.018 mmol), and 1,4-dioxane (3.0 mL), **5b** was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=20:1) as a slightly yellow oil (130 mg, 76%); R_f 0.20 (*n*-hexane/EtOAc=10:1). Reaction time: 4 h. ¹H NMR (300 MHz, CDCl₃): δ =0.92 (t, ³J=7.1 Hz, 3H, CH₂CH₂CH₃), 1.22 (t, ³J=7.1 Hz, 3H, OCH₂CH₃), 1.32–1.53 (m, 4H, CH₂CH₂CH₃), 1.65–1.78 (m, 1H, CHC H_AH_B), 2.05–2.17 (m, 1H, CHC H_AH_B), 4.26 (m, 2H, OC H_2 CH₃), 5.27 (dd, 3J_1 =7.8 Hz, 3J_2 =3.3 Hz, 1H, OCH), 7.38–7.44 (m, 3H, Ph), 7.52–7.59 (m, 2H, Ph). 13 C NMR (75 MHz, CDCl₃): δ =13.7 (2×CH₃), 22.2, 26.6, 32.3 ((CH₂)₃), 61.7 (OCH₂), 80.8 (OCH), 127.8 (CH_{Ar}), 128.4 (C), 129.4, 129.7 (CH_{Ar}), 135.4, 148.9 (C), 162.2, 171.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2959 (m), 2932 (m), 2873 (w), 1766 (s), 1721 (s), 1377 (w), 1224 (m), 1177 (m), 1015 (m), 696 (m). MS (EI, 70 eV): *m*/*z* (%)=288 (M⁺, 32), 243 (16), 204 (99), 203 (100), 175 (97), 147 (39), 129 (31), 77 (8), 57 (17). HRMS (EI, 70 eV): calcd for C₁₇H₂₀O₄ (M⁺) 288.13561; found 288.13484.

3.4.3. Ethyl 2-butyl-5-oxo-4-(4-tolyl)-2,5-dihydrofuran-3-carboxylate (5c). Starting with 4b (220 mg, 0.61 mmol), K₃PO₄ (194 mg, 0.91 mmol), 4-tolylboronic acid (108 mg, 0.79 mmol), Pd(PPh₃)₄ (21 mg, 0.018 mmol), and 1,4-dioxane (3.0 mL), 5c was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=100:1 \rightarrow 20:1) as a colorless oil (84 mg, 45%); R_f 0.24 (*n*-hexane/EtOAc=10:1). Reaction time: 6 h. ¹H NMR (300 MHz, CDCl₃): δ =0.92 (t, ${}^{3}J=7.2$ Hz, 3H, CH₂CH₂CH₃), 1.25 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.29–1.52 (m, 4H, CH₂CH₂CH₃), 1.64–1.76 (m, 1H, CHC H_AH_B), 2.04–2.17 (m, 1H, CHC H_AH_B), 2.38 (s, 3H, ArCH₃), 4.27 (m, 2H, OCH₂CH₃), 5.25 (dd, ${}^{3}J_{1}$ =7.8 Hz, ${}^{3}J_{2}$ =3.3 Hz, 1H, OCH), 7.22 (d, ${}^{3}J$ =8.2 Hz, 2H, Ar), 7.48 (m, 2H, Ar). ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.8, 13.9 (CH_2CH_3), 21.5 (ArCH_3), 22.3, 26.7, 32.5$ ((CH₂)₃), 61.8 (OCH₂CH₃), 80.9 (OCH), 125.5 (C), 128.7, 129.5 (CH_{Ar}), 135.5, 140.2, 148.1 (C), 162.5, 171.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2959 (m), 2932 (m), 2873 (w), 1765 (s), 1729 (s), 1718 (s), 1376 (w), 1225 (m), 1177 (m), 1015 (m). MS (EI, 70 eV): m/z (%)=302 (M⁺, 69), 257 (23), 229 (25), 218 (99), 217 (99), 189 (100), 161 (76), 143 (37), 115 (30), 91 (11), 57 (21). Anal. Calcd for C₁₈H₂₂O₄ (302.36): C, 71.50; H, 7.33. Found: C, 71.34; H, 7.41.

3.4.4. Ethyl 2-butyl-4-(2-methoxyphenyl)-5-oxo-2,5-dihydrofuran-3-carboxylate (5d). Starting with 4b (211 mg, 0.59 mmol), K₃PO₄ (186 mg, 0.88 mmol), 2-methoxyphenylboronic acid (116 mg, 0.76 mmol), Pd(PPh₃)₄ (20 mg, 0.017 mmol), and 1,4-dioxane (3.0 mL), 5d was isolated by column chromatography (silica gel; n-hexane/ EtOAc=1:0 \rightarrow 15:1) as a slightly yellow solid (44 mg, 24%). Mp 71–72 °C; $R_f 0.13$ (*n*-hexane/EtOAc=10:1). Reaction time: 6 h. ¹H NMR (300 MHz, CDCl₃): δ =0.92 (t, ${}^{3}J=7.1$ Hz, 3H, CH₂CH₂CH₃), 1.14 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.30–1.50 (m, 4H, CH₂CH₂CH₃), 1.63–1.80 (m, 1H, CHC H_AH_B), 2.03–2.17 (m, 1H, CHC H_AH_B), 3.76 (m, 3H, OCH₃), 4.19 (m, 2H, OCH₂), 5.30 (dd, ${}^{3}J_{1}$ =7.7 Hz, ${}^{3}J_{2}$ =3.3 Hz, 1H, OCH), 6.89 (d, ${}^{3}J$ =8.0 Hz, 1H, Ar), 7.03 (dt, ${}^{3}J=7.5$ Hz, ${}^{4}J=1.0$ Hz, 1H, Ar), 7.35– 7.44 (m, 2H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ =13.75, 13.83 (CH₂CH₃), 22.3, 26.6, 32.3 ((CH₂)₃), 55.3 (OCH₃), 61.3 (OCH₂), 81.0 (OCH), 110.6 (CH_{Ar}), 118.2 (C), 120.3, 130.4, 130.9 (CH_{Ar}), 132.1, 151.0, 156.9 (C), 162.5, 171.5 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2958 (m), 2936 (m), 2873 (w), 1762 (s), 1723 (s), 1494 (m), 1467 (m), 1381 (m), 1253 (m), 1240 (m), 1172 (m), 1016 (m), 763 (m). MS (EI, 70 eV): m/z (%)=318 (M⁺, 81), 272 (53), 257 (22), 234 (64), 233 (100), 205 (92), 177 (13), 159 (33), 57 (15). HRMS (EI, 70 eV): calcd for C₁₈H₂₂O₅ (M⁺) 318.14618; found 318.14636.

3.4.5. Ethyl 2-butyl-4-(3,4-dimethoxyphenyl)-5-oxo-2,5dihydrofuran-3-carboxylate (5e). Starting with 4b (195 mg, 0.54 mmol), K₃PO₄ (172 mg, 0.81 mmol), 3,4-dimethoxyphenylboronic acid (128 mg, 0.70 mmol), Pd(PPh₃)₄ (19 mg, 0.016 mmol), and 1,4-dioxane (3.0 mL), 5e was isolated by column chromatography (silica gel; *n*-hexane/EtOAc= 5:1) as a slightly turbid yellow oil (105 mg, 56%); R_f 0.31 (*n*-hexane/EtOAc=3:1). Reaction time: 6 h. ¹H NMR (300 MHz, CDCl₃): δ =0.93 (t, ³J=7.1 Hz, 3H, CH₂CH₂- CH_3), 1.29 (t, ${}^{3}J=7.2$ Hz, 3H, OCH₂CH₃), 1.32–1.53 (m, 4H, CH₂CH₂CH₃), 1.62–1.76 (m, 1H, CHCH_AH_B), 2.03– 2.14 (m, 1H, CHCH_AH_B), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 4.30 (m, 2H, OCH₂), 5.25 (dd, ${}^{3}J_{1}=7.9$ Hz, ${}^{3}J_{2}=3.3$ Hz, 1H, OCH), 6.91 (d, ${}^{3}J=8.2$ Hz, 1H, Ar), 7.23 (d, ${}^{4}J=2.0$ Hz, 1H, Ar), 7.25 (dd, ${}^{3}J=8.2$ Hz, ${}^{4}J=2.0$ Hz, 1H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ =13.7, 13.9 (CH₂CH₃), 22.2, 26.6, 32.4 ((CH₂)₃), 55.76, 55.80 (OCH₃), 61.7 (OCH₂), 80.7 (OCH), 110.3, 112.6 (CH_{Ar}), 120.8 (C), 123.0 (CH_{Ar}), 134.6, 147.2, 148.2, 150.4 (C), 162.5, 171.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3007 (m), 2957 (s), 2935 (m), 2869 (m), 1763 (s), 1728 (s), 1603 (m), 1515 (s), 1466 (m), 1327 (m), 1262 (s), 1208 (s), 1143 (s), 1024 (s), 760 (m). MS (EI, 70 eV): m/z (%)=348 (M⁺, 100), 302 (28), 275 (32), 264 (49), 263 (94), 236 (33), 235 (90), 207 (72), 189 (17), 57 (13). Anal. Calcd for C₁₉H₂₄O₆ (348.39): C, 65.50; H, 6.94. Found: C, 65.73; H, 7.08.

3.4.6. Ethyl 2-butyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-2,5-dihydrofuran-3-carboxylate (5f). Starting with 4b (154 mg, 0.43 mmol), K₃PO₄ (136 mg, 0.64 mmol), 3,4,5trimethoxyphenylboronic acid (118 mg, 0.56 mmol), $Pd(PPh_3)_4$ (15 mg, 0.013 mmol), and 1.4-dioxane (2.5 mL). 5f was isolated by column chromatography (silica gel; *n*-hexane/EtOAc= $10:1 \rightarrow 5:1$) as a yellow oil (104 mg, 64%); $R_f 0.25$ (*n*-hexane/EtOAc=3:1). Reaction time: 6 h. ¹H NMŘ (300 MHz, CDCl₃): δ =0.93 (t, ³*J*=7.2 Hz, 3H, CH₂CH₂CH₃), 1.28 (t, ³J=7.1 Hz, 3H, OCH₂CH₃), 1.32-1.54 (m, 4H, CH₂CH₂CH₃), 1.64–1.80 (m, 1H, CHCH_AH_B), 2.03–2.14 (m, 1H, CHCH_AH_B), 3.88 (s, 6H, OCH₃), 3.89 (s, 3H, OCH₃), 4.30 (m, 2H, OCH₂), 5.26 (dd, ${}^{3}J_{1}$ =7.9 Hz, ${}^{3}J_{2}$ =3.3 Hz, 1H, OCH), 6.89 (s, 2H, Ar). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ=13.7, 13.9 (CH₂CH₃), 22.2, 26.6, 32.4 ((CH₂)₃), 56.1, 60.7 (OCH₃), 61.8 (OCH₂), 80.7 (OCH), 106.9 (CH_{Ar}), 123.5, 134.5, 139.4, 148.6, 152.7 (C), 162.4, 171.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2959 (m), 2938 (m), 2873 (w), 1764 (s), 1726 (m), 1582 (m), 1507 (m), 1461 (m), 1418 (m), 1294 (m), 1246 (m), 1211 (m), 1129 (s), 1010 (m). MS (EI, 70 eV): m/z (%)=378 (M⁺, 100), 332 (19), 305 (26), 293 (84), 265 (77), 237 (39), 57 (16). Anal. Calcd for C₂₀H₂₆O₇ (378.42): C, 63.48; H, 6.93. Found: C, 63.46; H, 7.08.

3.4.7. Ethyl 2-butyl-5-oxo-4-(thien-2-yl)-2,5-dihydrofuran-3-carboxylate (5g). Starting with **4b** (188 mg, 0.52 mmol), K₃PO₄ (166 mg, 0.78 mmol), (thien-2-yl)boronic acid (87 mg, 0.68 mmol), Pd(PPh₃)₄ (18 mg, 0.016 mmol), and 1,4-dioxane (3.0 mL), **5g** was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=20:1) as a yellow oil (101 mg, 66%); R_f 0.32 (*n*-hexane/EtOAc=10:1). Reaction time: 4 h. ¹H NMR (300 MHz, CDCl₃): δ =0.91 (t, ³*J*=7.1 Hz, 3H, CH₂CH₂CH₃), 1.25–1.50 (m, 7H, OCH₂CH₃, CH₂CH₂CH₃), 1.60–1.75 (m, 1H, CHCH_AH_B), 2.01–2.13 (m, 1H, CHCH_AH_B), 4.40 (m, 2H, OCH₂), 5.27 (dd, ${}^{3}J_{1}$ =7.7 Hz, ${}^{3}J_{2}$ =3.2 Hz, 1H, OCH), 7.14 (dd, ${}^{3}J_{1}$ =5.1 Hz, ${}^{3}J_{2}$ =3.9 Hz, 1H, Ar), 7.58 (dd, ${}^{3}J_{1}$ =5.1 Hz, ${}^{3}J_{2}$ =1.0 Hz, 1H, Ar), 8.31 (dd, ${}^{3}J_{1}$ =3.9 Hz, ${}^{3}J_{2}$ =1.0 Hz, 1H, Ar). 13 C NMR (75 MHz, CDCl₃): δ =13.7, 14.0 (CH₃), 22.2, 26.6, 32.6 ((CH₂)₃), 61.9 (OCH₂), 80.9 (OCH), 127.1 (CH_{Ar}), 128.1, 129.5 (C), 131.1, 132.9 (CH_{Ar}), 142.5 (C), 162.3, 170.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2959 (m), 2932 (m), 2872 (w), 1764 (s), 1721 (s), 1306 (m), 1237 (s), 1204 (s), 1136 (m), 1016 (m). MS (EI, 70 eV): *m/z* (%)=294 (M⁺, 65), 237 (26), 210 (88), 209 (99), 181 (100), 153 (44), 135 (21), 57 (23). HRMS (EI, 70 eV): calcd for C₁₅H₁₈O₄S (M⁺) 294.09203; found 294.09169.

3.4.8. Ethyl 2-isobutyl-4-(4-methoxyphenyl)-5-oxo-2,5dihydrofuran-3-carboxylate (5h). Starting with 4c (40 mg, 0.11 mmol), K₃PO₄ (35 mg, 0.16 mmol), 4-methoxyphenylboronic acid (22 mg, 0.14 mmol), Pd(PPh₃)₄ (6 mg, 0.005 mmol), and 1,4-dioxane (1.5 mL), 5h was isolated by column chromatography (silica gel; *n*-heptane/EtOAc= 20:1) as a colorless solid (20 mg, 57%). Mp 56–58 °C; R_f 0.13 (n-heptane/EtOAc=10:1). Reaction time: 8 h. ¹H NMR (250 MHz, CDCl₃): δ =0.99 (d, ³J=6.4 Hz, 3H, CHC H_3), 1.04 (d, ³J=6.4 Hz, 3H, CHC H_3), 1.27 (t, ${}^{3}J=7.0$ Hz, 3H, OCH₂CH₃), 1.52 (ddd, ${}^{2}J=14.0$ Hz, ${}^{3}J_{1}=9.8$ Hz, ${}^{3}J_{2}=4.3$ Hz, 1H, CHCH_AH_B), 1.84 (ddd, $^{2}J=14.0$ Hz, $^{3}J_{1}=9.2$ Hz, $^{3}J_{2}=2.7$ Hz, 1H, CHCH_AH_B), 1.92-2.05 (m, 1H, CH(CH₃)₂), 3.84 (s, 3H, OCH₃), 4.28 (m, 2H, OCH₂), 5.27 (dd, ${}^{3}J_{1}=9.8$ Hz, ${}^{3}J_{2}=2.7$ Hz, 1H, OCH), 6.94 (m, 2H, Ar), 7.58 (m, 2H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ=13.9 (OCH₂CH₃), 21.6, 23.5, 25.3 (CH(CH₃)₂), 42.3 (CHCH₂), 55.3 (OCH₃), 61.8 (OCH₂), 79.7 (OCH), 113.5 (CH_{Ar}), 120.8 (C), 131.4 (CH_{Ar}), 134.8, 147.5 (C), 161.0, 162.5 (C, CO), 171.6 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2950 (s), 2867 (m), 1747 (s), 1712 (s), 1607 (s), 1514 (s), 1300 (s), 1261 (s), 1247 (s), 1190 (s), 1184 (s), 1018 (s), 1001 (s), 769 (m). MS (EI, 70 eV): m/z (%)=318 (M⁺, 59), 272 (25), 234 (57), 233 (100), 205 (91), 177 (68), 57 (15). HRMS (EI, 70 eV): calcd for C₁₈H₂₂O₅ (M⁺) 318.14618; found 318.14633.

3.4.9. Methyl 2-tert-butyl-5-oxo-4-phenyl-2,5-dihydrofuran-3-carboxylate (5i). Starting with 4d (295 mg, 0.85 mmol), K₃PO₄ (271 mg, 1.28 mmol), phenylboronic acid (135 mg, 1.11 mmol), Pd(PPh₃)₄ (30 mg, 0.026 mmol), and 1,4-dioxane (4.0 mL), 5i was isolated by column chromatography (silica gel; *n*-heptane/EtOAc= $20:1 \rightarrow 10:1$) as a colorless oil (201 mg, 86%); $R_f 0.17$ (*n*-heptane/EtOAc=10:1). Reaction time: 8 h. ¹H NMR (250 MHz, CDCl₃): δ =1.03 (s, 9H, C(CH₃)₃), 3.79 (s, 3H, OCH₃), 5.05 (s, 1H, OCH), 7.38–7.45 (m, 3H, Ph), 7.53–7.62 (m, 2H, Ph). ¹³C NMR (75 MHz, CDCl₃): δ=25.5 (C(CH₃)₃), 36.3 (C(CH₃)₃), 52.7 (OCH₃), 88.0 (OCH), 128.29 (C), 128.34, 129.0, 129.9 (CH_{Ar}), 133.7, 149.3 (C), 164.7, 170.7 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2967 (m), 2911 (w), 2874 (w), 1767 (s), 1735 (s), 1437 (m), 1369 (m), 1319 (m), 1232 (s), 1166 (s), 1117 (m), 1043 (m), 977 (m), 696 (m). MS (EI, 70 eV): m/z (%)=274 (M⁺, 2), 218 (100), 186 (99), 129 (50), 57 (86). HRMS (EI, 70 eV): calcd for $C_{16}H_{18}O_4$ (M⁺) 274.11996; found 274.11928.

3.4.10. Methyl 2-hexyl-5-oxo-4-phenyl-2,5-dihydrofuran-3-carboxylate (5j). Starting with 4e (208 mg, 0.56 mmol), K₃PO₄ (177 mg, 0.83 mmol), phenylboronic acid (88 mg, 0.72 mmol), Pd(PPh₃)₄ (19 mg, 0.016 mmol), and 1,4-dioxane (3.0 mL), 5j was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=1:0 \rightarrow 50:1) as a slightly yellow oil (103 mg, 61%); R_f 0.30 (*n*-hexane/ EtOAc=10:1). Reaction time: 4 h. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, ³J=6.8 Hz, 3H, CH₂CH₃), 1.20–1.42 (m, 6H, CH₂), 1.48 (m, 2H, CH₂), 1.63-1.76 (m, 1H, CHCH_AH_B), 2.03–2.15 (m, 1H, CHCH_AH_B), 3.78 (s, 3H, OCH₃), 5.26 (dd, ${}^{3}J_{1}$ =7.9 Hz, ${}^{3}J_{2}$ =3.3 Hz, 1H, OCH), 7.38–7.46 (m, 3H, Ph), 7.51–7.58 (m, 2H, Ph). ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.9$ (CH₂CH₃), 22.4, 24.5, 28.8, 31.4, 32.7 (CH₂), 52.4 (OCH₃), 80.8 (OCH), 128.0 (CH_{Ar}), 128.3 (C), 129.4, 129.8 (CH_{Ar}), 135.6, 148.4 (C), 162.7, 171.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =2955 (s), 2929 (s), 2858 (m), 1766 (s), 1733 (s), 1437 (m), 1225 (s), 1170 (s), 982 (m), 695 (m). MS (EI, 70 eV): m/z (%)=302 (M⁺, 36), 273 (26), 190 (99), 189 (100), 186 (34), 172 (12), 161 (66), 129 (49), 113 (67), 85 (16), 57 (8). Anal. Calcd for C₁₈H₂₂O₄ (302.36): C, 71.50; H, 7.33. Found: C, 71.48; H, 7.45.

3.4.11. Ethyl 5-oxo-2,4-diphenyl-2,5-dihydrofuran-3carboxylate (5k). Starting with 4f (190 mg, 0.50 mmol), K₃PO₄ (159 mg, 0.75 mmol), phenylboronic acid (79 mg, 0.65 mmol), Pd(PPh₃)₄ (17 mg, 0.015 mmol), and 1,4-dioxane (2.5 mL), 5k was isolated by column chromatography (silica gel; *n*-hexane/EtOAc=1:0 \rightarrow 20:1) as a slightly yellow solid (70 mg, 45%). Mp 110-112 °C; Rf 0.13 (n-hexane/EtOAc=10:1). Reaction time: 4 h. ¹H NMR (300 MHz, CDCl₃): δ =1.06 (t, ³*J*=7.1 Hz, 3H, CH₃), 4.11 (m, 2H, OCH₂), 6.20 (s, 1H, OCH), 7.30-7.42 (m, 5H, Ph), 7.42–7.48 (m, 3H, Ph), 7.63–7.71 (m, 2H, Ph). ¹³C NMR (150 MHz, CDCl₃): $\delta = 13.6$ (CH₃), 61.8 (OCH₂), 82.2 (OCH), 127.3, 128.05 (CHAr), 128.12 (C), 128.9, 129.6, 129.7, 130.1 (CH_{Ar}), 133.8, 134.8, 148.4 (C), 161.8, 171.2 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 1758 (s), 1729 (m), 1651 (m), 1494 (m), 1446 (m), 1369 (m), 1288 (m), 1220 (s), 1117 (m), 1014 (s), 792 (m), 692 (m). MS (EI, 70 eV): m/z (%)=308 (M⁺, 23), 279 (22), 235 (34), 203 (22), 175 (21), 105 (100), 77 (18). HRMS (EI, 70 eV): calcd for C₁₉H₁₆O₄ (M⁺) 308.10431; found 308.10351.

3.5. General procedure for the preparation of 3-hydroxyesters 1a–u

An LDA solution was prepared by the addition of *n*-BuLi to a THF solution of diisopropylamine at 0 °C. After stirring for 1 h, the solution was cooled to -78 °C and the respective ester or ketone was dropwise added. After stirring for 1 h at -78 °C, the appropriate electrophile was added within 30 s. After stirring for 3–5 min, hydrochloric acid was added. The organic and the aqueous layer were separated and the solvents were removed under reduced pressure. The aqueous layer was extracted with ethyl acetate $(2 \times 150 \text{ mL})$. The combined organic layers were washed with a saturated aqueous solution of NaHCO₃ (2×50 mL), dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo. The residue was purified by vacuum destillation or by column chromatography (silica gel) to give 3-hydroxyesters 1a-u. The synthesis of 1a,³⁹ 1b,⁴⁰ 1c,⁴¹ 1d,⁴² 1e,⁴³ 1f,⁴³ 1g,⁴⁴ 1h,⁴⁵ 1i,⁴⁶ 1j,⁴⁷ 1k,⁴⁸ 1l,⁴⁹ 1n,⁴⁷ 1o,⁵⁰ 1p,⁵¹ 1q,⁵¹ 1r,⁵² 1s,⁵³ and 1t⁵³ was previously reported.

3.5.1. Methyl 3-hydroxybutyrate (1a). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), methyl acetate (7.41 g, 100 mmol), acetaldehyde (5.29 g, 120 mmol), and hydrochloric acid (2.0 M, 50 mL), 1a was isolated by destillation as a clear colorless liquid (6.43 g, 54%); bp 34 °C (0.1 mbar). Reaction time: 3.5 min. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (d, ³J=6.3 Hz, 3H, CHCH₃), 2.43 (dd, $^{2}J=16.5$ Hz, $^{3}J=7.4$ Hz, 1H, $CH_{A}H_{B}$), 2.51 (dd. $^{2}J=16.5$ Hz, $^{3}J=3.8$ Hz, 1H, CH_AH_B), 2.8 (br, 1H, OH), 3.72 (s, 3H, OCH₃), 4.21 (m, 1H, CHOH). ¹³C NMR (75 MHz, CDCl₃): δ =22.3 (CHCH₃), 42.6 (CH₂), 51.4 (OCH₂), 64.0 (CH), 172.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3431 (br, s), 2974 (m), 2935 (w), 1737 (s), 1439 (m), 1377 (m), 1297 (m), 1196 (m), 1176 (m), 1126 (m), 1089 (m), 946 (w). MS (GC-EI, 70 eV): m/z (%)=117 ([M-1]⁺, 2), 103 (38), 100 (6), 87 (29), 74 (83), 71 (45), 59 (18), 45 (57), 43 (100).

3.5.2. Ethyl 3-hydroxyvalerate (1c). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), ethyl acetate (8.81 g, 100 mmol), propionaldehyde (6.97 g, 120 mmol), and hydrochloric acid (2.0 M, 50 mL), 1c was isolated by destillation as a clear colorless liquid (12.09 g, 83%); bp 100 °C (5 mbar). Reaction time: 3.5 min. ¹H NMR (300 MHz, CDCl₃): δ =0.97 (t, ³J=7.4 Hz, 3H, CH₃CH₂-CH), 1.28 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.52 (m, 2H, CH₃CH₂CH), 2.40 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=8.9$ Hz, 1H, CH_AH_BCO), 2.51 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=3.3$ Hz, 1H, CH_AH_BCO), 2.85 (br, 1H, OH), 3.94 (dddd, ${}^{3}J_1$ =8.9 Hz, ${}^{3}J_{2}$ =7.0 Hz, ${}^{3}J_{3}$ =5.5 Hz, ${}^{3}J_{4}$ =3.3 Hz, 1H, CHOH), 4.18 $(q, {}^{3}J=7.1 \text{ Hz}, 2\text{H}, \text{ OCH}_{2})$. ${}^{13}\text{C}$ NMR (75 MHz, CDCl₃): $\delta = 9.7 (CH_3CH_2CH), 14.0 (OCH_2CH_3), 29.3 (CH_3CH_2CH),$ 40.9 (CH₂CO), 60.5 (OCH₂), 69.2 (CHOH), 172.9 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3447 (br, m), 2968 (m), 2936 (m), 2880 (w), 1735 (s), 1465 (w), 1374 (m), 1282 (m), 1250 (m), 1179 (s), 1112 (m), 1034 (m), 983 (m). MS (GC-EI, 70 eV): m/z $(\%)=145 ([M-1]^+, 1), 128 (3), 117 (100), 101 (29), 89$ (48), 71 (93), 59 (40), 43 (49). HRMS (EI, 70 eV): calcd for C₇H₁₃O₃ ([M-1]⁺) 145.08592; found 145.08556.

3.5.3. Ethyl 3-hydroxyheptanoate (1g). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), ethyl acetate (8.81 g, 100 mmol), valeraldehyde (10.34 g, 120 mmol), and hydrochloric acid (2.0 M, 50 mL), 1g was isolated by destillation as a clear colorless liquid (14.52 g, 83%); bp 70 °C (0.1 mbar). Reaction time: 3.5 min. ¹H NMR (300 MHz, CDCl₃): δ =0.91 (t, ³*J*=7.1 Hz, 3H, CH₃CH₂-CH₂), 1.28 (t, ${}^{3}J=7.1$ Hz, 3H, OCH₂CH₃), 1.30–1.60 (m, 6H, (CH₂)₃), 2.40 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=8.8$ Hz, 1H, $CH_{A}H_{B}CO$, 2.51 (dd, ²J=16.4 Hz, ³J=3.3 Hz, 1H, CH_A-H_BCO), 2.89 (br, 1H, OH), 4.00 (m, 1H, CHOH), 4.17 (q, ${}^{3}J=7.1$ Hz, 2H, OCH₂). ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 13.9, 14.1$ (CH₃), 22.5, 27.5, 36.2 ((CH₂)₃), 41.3 (CH₂CO), 60.5 (OCH₂), 67.9 (CHOH), 173.0 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3447 (br, m), 2959 (s), 2933 (s), 2873 (m), 2862 (m), 1735 (s), 1374 (m), 1300 (m), 1249 (m), 1176 (m), 1028 (m). MS (GC-EI, 70 eV): m/z (%)=173 $([M-1]^+, 0.5), 156 (2), 117 (100), 89 (33), 88 (31), 71$ (59), 43 (30). HRMS (EI, 70 eV): calcd for $C_9H_{17}O_3$ $([M-1]^+)$ 173.11722; found 173.11724.

3.5.4. tert-Butyl 3-hydroxyheptanoate (1h). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), tert-butyl acetate (11.62 g, 100 mmol), valeraldehyde (10.34 g, 120 mmol), and hydrochloric acid (2.0 M, 50 mL), 1h was isolated by destillation as a clear colorless liquid (18.55 g, 92%); bp 78 °C (0.1 mbar). Reaction time: 3.5 min. ¹H NMR (300 MHz, CDCl₃): δ =0.91 (t, ³*J*=7.1 Hz, 3H, C*H*₃CH₂), 1.25-1.55 (m, 6H, (CH₂)₃), 1.47 (s, 9H, C(CH₃)₃), 2.31 (dd, ${}^{2}J=16.3$ Hz, ${}^{3}J=8.8$ Hz, 1H, CH_AH_BCO), 2.43 (dd, ${}^{2}J=16.3$ Hz, ${}^{3}J=3.3$ Hz, 1H, CH_AH_BCO), 2.94 (br, 1H, OH), 3.96 (m, 1H, CHOH). ¹³C NMR (75 MHz. CDCl₃): $\delta = 13.9$ (CH₃CH₂), 22.6, 27.6 (CH₂), 28.1 (C(CH₃)₃), 36.1 (CH₂), 42.3 (CH₂CO), 68.1 (CHOH), 81.1 $(C(CH_3)_3)$, 172.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3443 (br, m), 2959 (s), 2933 (s), 2873 (m), 2862 (m), 1730 (s), 1458 (m), 1393 (m), 1368 (s), 1298 (m), 1255 (m), 1156 (s), 1039 (w). MS (CI, isobutane): m/z (%)=203 ([M+1]⁺, 1), 147 (100).

3.5.5. Methyl 3-hydroxy-4,4-dimethylvalerate (1j). Starting with diisopropylamine (7.08 g, 70 mmol), THF (70 mL), n-BuLi (2.5 M in hexanes, 29 mL, 72 mmol), methyl acetate (5.19 g, 70 mmol), pivalaldehyde (7.24 g, 84 mmol), and hydrochloric acid (2.0 M, 35 mL), 1j was isolated by destillation as a clear colorless liquid (6.76 g, 60%); bp 69 °C (0.1 mbar). Reaction time: 4 min. ¹H NMR (300 MHz, CDCl₃): δ=0.92 (s, 9H, C(CH₃)₃), 2.36 (dd, $^{2}J=16.1$ Hz, $^{3}J=10.5$ Hz, 1H, CH_AH_BCO), 2.54 (dd, $^{2}J=16.1$ Hz, $^{3}J=2.3$ Hz, 1H, CH_AH_BCO), 2.85 (br, 1H, OH), 3.71 (dd, ${}^{3}J_{1}=10.5$ Hz, ${}^{3}J_{2}=2.3$ Hz, 1H, CHOH), 3.72 (s, 3H, OCH₃). ¹³C NMR (75 MHz, CDCl₃): δ =25.5 (C(CH₃)₃), 34.3 (CCH), 36.4 (CH₂), 51.8 (OCH₃), 75.4 (CHOH), 174.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3515 (br, m), 2957 (s), 2909 (m), 2873 (m), 1731 (s), 1439 (m), 1366 (m), 1304 (m), 1166 (m), 1015 (m). MS (GC-EI, 70 eV): m/z (%)=159 ([M-1]⁺, 0.1), 103 (100), 87 (14), 71 (65), 57 (35), 43 (41). HRMS (EI, 70 eV): calcd for C₈H₁₅O₃ ([M-1]⁺) 159.10157; found 159.10226.

3.5.6. Methyl 3-hydroxynonanoate (1k). Starting with diisopropylamine (8.91 g, 88 mmol), THF (80 mL), n-BuLi (2.5 M in hexanes, 36 mL, 90 mmol), methyl acetate (5.93 g, 80 mmol), heptanal (9.14 g, 80 mmol), and hydrochloric acid (2.0 M, 44 mL), 1k was isolated by destillation as a clear colorless liquid (9.83 g, 65%); bp 77 $^\circ C$ (0.1 mbar). Reaction time: 4 min. $^1H\,$ NMR (300 MHz, CDCl₃): δ =0.88 (t, ³*J*=6.8 Hz, 3H, C*H*₃CH₂), 1.15–1.60 (m, 10H, (CH₂)₅), 2.41 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=8.8$ Hz, 1H, CH_AH_BCO), 2.52 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=3.4$ Hz, 1H, CH_AH_BCO), 2.94 (br, 1H, OH), 3.71 (s, 3H, OCH₃), 4.00 (m, 1H, CHOH). ¹³C NMR (75 MHz, CDCl₃): δ =13.9 (CH₃CH₂), 22.5, 25.3, 29.1, 31.7, 36.5 ((CH₂)₅), 41.1 (CH₂CO), 51.6 (OCH₃), 67.9 (CHOH), 173.3 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3457 (br, m), 2955 (s), 2930 (s), 2858 (m), 1740 (s), 1438 (m), 1290 (m), 1197 (m), 1167 (m), 1056 (w). MS (GC-EI, 70 eV): m/z (%)=187 ([M-1]⁺, 0.5), 170 (0.6), 103 (100), 74 (33), 71 (35), 55 (19), 43 (34). HRMS (EI, 70 eV): calcd for $C_{10}H_{19}O_3$ ([M-1]⁺) 187.13287; found 187.13289.

3.5.7. Ethyl 3-hydroxy-12-tridecenoate (1m). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL),

n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), ethyl acetate (8.81 g, 100 mmol), 10-undecenal (13.46 g, 80 mmol), and hydrochloric acid (2.0 M, 50 mL), 1m was isolated by column chromatography (silica gel; n-heptane/ethyl acetate=7:1 \rightarrow 5:1) as a clear slightly yellow oil (13.23 g, 65%); R_f 0.33 (*n*-heptane/ethyl acetate=5:1). Reaction time: 4.5 min. ¹H NMR (250 MHz, CDCl₃): δ =1.23–1.55 (m, 17H, CHOH(CH₂)₇, CH₃), 2.03 (m, 2H, H₂C=CHCH₂), 2.38 (dd, ²J=16.4 Hz, ³J=8.7 Hz, 1H, CH_AH_BCO), 2.50 (dd, ${}^{2}J=16.4$ Hz, ${}^{3}J=3.4$ Hz, 1H, CH_AH_BCO), 2.66 (br, 1H, OH), 3.99 (m, 1H, CHOH), 4.16 (q, ³J=7.1 Hz, 2H, OCH₂), 4.88-5.03 (m, 2H, $H_2C=CH$), 5.80 (ddt, ${}^{3}J_{1} = 17.0 \text{ Hz}, {}^{3}J_{2} = 10.3 \text{ Hz}, {}^{3}J_{3} = 6.7 \text{ Hz}, 1\text{H}, \text{H}_{2}\text{C} = \text{C}H$). ¹³C NMR (75 MHz, CDCl₃): δ =14.2 (CH₃), 25.5, 28.9, 29.1, 29.4, 29.5, 29.5, 33.8, 36.5, 41.3 ((CH₂)₈, CH₂CO), 60.7 (OCH₂), 68.0 (CHOH), 114.1 (H₂C=CH), 139.2 $(H_2C=CH)$, 173.1 (CO). IR (neat, cm⁻¹): $\tilde{\nu}=3454$ (br, w), 2979 (m), 2927 (s), 2855 (m), 1736 (s), 1641 (w), 1465 (m), 1373 (m), 1301 (m), 1182 (m), 1030 (m), 910 (m). MS (CI, isobutane): m/z (%)=257 ([M+1]⁺, 100), 239 (20). Anal. Calcd for C₁₅H₂₈O₃ (256.38): C, 70.27; H, 11.01. Found: C, 70.10; H, 11.20.

3.5.8. Ethyl 3-hydroxy-3-phenylpropionate (10). Starting with diisopropylamine (6.07 g, 60 mmol), THF (70 mL), *n*-BuLi (2.5 M in hexanes, 25 mL, 63 mmol), ethyl acetate (4.85 g, 55 mmol), benzaldehyde (5.31 g, 50 mmol), and hydrochloric acid (2.0 M, 28 mL), 10 was isolated by destillation as a clear slightly yellow liquid (7.58 g, 78%); bp 110 °C (0.1 mbar). Reaction time: 4 min. 1 H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.25$ (t, ${}^{3}J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3$), 2.68 (dd, ${}^{2}J=16.3$ Hz, ${}^{3}J=4.4$ Hz, 1H, CH_AH_BCO), 2.75 (dd, $^{2}J=16.3$ Hz, $^{3}J=8.4$ Hz, 1H, CH_AH_BCO), 3.34 (d, ³*J*=3.5 Hz, 1H, OH), 4.17 (q, ³*J*=7.1 Hz, 2H, OCH₂), 5.12 (m, 1H, CHOH), 7.24–7.39 (m, 5H, Ph). ¹³C NMR (75 MHz, CDCl₃): δ =14.0 (CH₃), 43.3 (CH₂CO), 60.7 (OCH₂), 70.2 (CHOH), 125.6, 127.6, 128.4 (CH_{Ar}), 142.5 (C_{Ar}), 172.2 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3458 (br, m), 2982 (w), 1732 (s), 1454 (w), 1372 (m), 1298 (m), 1268 (m), 1196 (m), 1162 (m), 1038 (m), 701 (m). MS (EI, 70 eV): m/z (%)=194 (M⁺, 39), 147 (10), 120 (19), 107 (100), 106 (25), 105 (75), 88 (19), 79 (65), 77 (53). HRMS (EI, 70 eV): calcd for C₁₁H₁₄O₃ (M⁺) 194.09375; found 194.09339.

3.5.9. Ethyl 3-hydroxy-3-(4-methylphenyl)-propionate (1p). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), n-BuLi (2.5 M in hexanes, 42 mL, 105 mmol), ethyl acetate (8.81 g, 100 mmol), 4-methylbenzaldehyde (9.57 g, 80 mmol), and hydrochloric acid (2.0 M, 50 mL), 1p was isolated by column chromatography (silica gel; *n*-heptane/ethyl acetate=5:1) as a clear yellow oil $(12.17 \text{ g}, 73\%); R_f 0.22$ (*n*-heptane/ethyl acetate=5:1). Reaction time: 5 min. ¹H NMR (250 MHz, CDCl₃): δ =1.26 (t, ³*J*=7.1 Hz, 3H, CH₂CH₃), 2.34 (s, 3H, ArCH₃), 2.67 (dd, ${}^{2}J=16.1$ Hz, ${}^{3}J=4.3$ Hz, 1H, CH_AH_BCO), 2.76 (dd, $^{2}J=16.1$ Hz, $^{3}J=8.4$ Hz, 1H, CH_AH_BCO), 3.21 (br, 1H, OH), 4.18 (q, ${}^{3}J=7.1$ Hz, 2H, OCH₂), 5.10 (dd, ${}^{3}J_{1}=8.6$ Hz, ${}^{3}J_{2}=4.3$ Hz, 1H, CHOH), 7.14–7.28 (m, 4H, Ar). ¹³C NMR (62 MHz, CDCl₃): δ =14.1 (CH₂CH₃), 21.1 (ArCH₃), 43.3 (CH₂CO), 60.8 (OCH₂), 70.1 (CHOH), 125.6, 129.2 (CH_{Ar}), 137.5, 139.5 (C_{Ar}), 172.4 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3459 (br, s), 2982 (m), 2925 (m), 1734

(s), 1515 (m), 1372 (m), 1195 (m), 1160 (m), 1038 (m), 819 (m). MS (EI, 70 eV): m/z (%)=208 (M⁺, 12), 190 (13), 145 (29), 121 (67), 120 (64), 119 (100), 93 (21), 91 (90), 65 (20). Anal. Calcd for C₁₂H₁₆O₃ (208.25): C, 69.21; H, 7.74. Found: C, 69.09; H, 7.85.

3.5.10. Ethyl 3-hydroxy-3-(2-methoxyphenyl)-propionate (1s). Starting with diisopropylamine (20.24 g, 200 mmol), THF (180 mL), n-BuLi (2.5 M in hexanes, 82 mL, 205 mmol), ethyl acetate (17.62 g, 200 mmol), 2-methoxybenzaldehyde (21.78 g, 160 mmol), dissolved in THF (20 mL), and hydrochloric acid (2.0 M, 100 mL), 1s was isolated by column chromatography (silica gel: *n*-heptane/ethyl acetate=3:1) as a clear slightly yellow oil $(16.41 \text{ g}, 37\%^*); R_f 0.27 (n-heptane/ethyl acetate=3:1). \text{Re-}$ action time: 4.5 min. *Only 55% of the raw product was used for column chromatography. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.26$ (t, ${}^{3}J = 7.1$ Hz, 3H, CH₂CH₃), 2.69 (dd, ${}^{2}J=16.1 \text{ Hz}, {}^{3}J=9.0 \text{ Hz}, 1\text{ H}, CH_{A}H_{B}CO), 2.83 \text{ (dd,} {}^{2}J=16.1 \text{ Hz}, {}^{3}J=4.0 \text{ Hz}, 1\text{ H}, CH_{A}H_{B}CO), 3.2 \text{ (br, 1H,}$ OH), 3.85 (s, 3H, OCH₃), 4.17 (q, 7.1 Hz, 2H, OCH₂), 5.36 (dd, ${}^{3}J_{1}$ =8.9 Hz, ${}^{3}J_{2}$ =3.7 Hz, 1H, CHOH), 6.87 (dd, ${}^{3}J$ =8.2 Hz, ${}^{4}J$ =0.9 Hz, 1H, Ar), 6.97 (m, 1H, Ar), 7.26 (m, 1H, Ar), 7.43 (dd, ${}^{3}J=7.6$ Hz, ${}^{4}J=1.5$ Hz, 1H, Ar). ${}^{13}C$ NMR (62 MHz, CDCl₃): $\delta = 14.0$ (CH₂CH₃), 41.6 (CH₂CO), 55.1 (OCH₃), 60.5 (OCH₂), 66.3 (CHOH), 110.1, 120.6, 126.4, 128.4 (CH_{Ar}), 130.5 (C_{Ar}CHOH), 155.9 ($C_{Ar}OCH_3$), 172.5 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3497 (br, s), 2981 (m), 2939 (m), 1733 (s), 1602 (m), 1492 (s), 1465 (s), 1286 (s), 1243 (s), 1190 (s), 1159 (s), 1029 (s), 756 (s). MS (EI, 70 eV): m/z (%)=224 (M⁺, 14), 206 (8), 175 (9), 161 (14), 150 (28), 137 (100), 135 (44), 107 (44), 77 (22). Anal. Calcd for C12H16O4 (224.25): C, 64.27; H, 7.19. Found: C, 64.25; H, 7.26.

3.5.11. Ethyl 3-(4-chlorophenyl)-3-hydroxypropionate (1t). Starting with diisopropylamine (10.12 g, 100 mmol), THF (90 mL), n-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), ethyl acetate (8.81 g, 100 mmol), 4-chlorobenzaldehyde (11.25 g, 80 mmol), dissolved in THF (10 mL), and hydrochloric acid (2.0 M, 50 mL), 1t was isolated by column chromatography (silica gel; n-heptane/ethyl acetate=3:1) as a clear slightly yellow oil (13.91 g, 76%); R_f 0.30 (*n*-heptane/ethyl acetate=3:1). Reaction time: 4.5 min. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.26$ (t, ³J= 7.1 Hz, 3H, CH₃), 2.68 (s, 1H, CH_AH_BCO), 2.70 (d, ${}^{3}J=2.1$ Hz, 1H, CH_AH_BCO), 3.2 (br, 1H, OH), 4.18 (q, ${}^{3}J=7.1$ Hz, 2H, OCH_2), 5.10 (dd, ${}^{3}J_{1}=7.3$ Hz, ${}^{3}J_{2}=5.5$ Hz, 1H, CHOH), 7.31 (s, 4H, Ar). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ =14.1 (CH₃), 43.2 (CH₂CO), 61.0 (OCH₂), 69.6 (CHOH), 127.1, 128.7 (CH_{Ar}), 133.5, 141.0 (C_{Ar}), 172.3 (CO). IR (neat, cm⁻¹): $\tilde{\nu}$ =3457 (br, s), 2983 (m), 1732 (s), 1493 (m), 1373 (m), 1194 (s), 1162 (m), 1091 (m), 1014 (s), 831 (m). MS (EI, 70 eV): m/z (%)=230 (M⁺, ³⁷Cl, 4), 228 (M⁺, ³⁵Cl, 9), 165 (25), 141 (77), 140 (52), 139 (100), 111 (34), 88 (20), 77 (36). Anal. Calcd for C₁₁H₁₃ClO₃ (228.67): C, 57.78; H, 5.73. Found: C, 57.66; H, 5.78.

3.5.12. Ethyl 3-hydroxy-3-methylbutyrate (1u). Starting with diisopropylamine (10.12 g, 100 mmol), THF (100 mL), *n*-BuLi (2.5 M in hexanes, 41 mL, 103 mmol), ethyl acetate (8.81 g, 100 mmol), acetone (6.97 g, 120 mmol), and hydrochloric acid (2.0 M, 50 mL), **1u** was

isolated by destillation as a clear colorless liquid (11.33 g, 77%); bp 48 °C (0.1 mbar). Reaction time: 10 min (-60 °C). ¹H NMR (250 MHz, CDCl₃): δ =1.25 (m, 9H, CH₂CH₃, C(CH₃)₂), 2.45 (s, 2H, CH₂CO), 3.59 (s, 1H, OH), 4.15 (q, ³J=7.1 Hz, 2H, OCH₂). ¹³C NMR (75 MHz, CDCl₃): δ =14.1 (CH₂CH₃), 29.1 (C(CH₃)₂), 46.3 (CH₂CO), 60.5 (OCH₂), 68.9 (COH), 172.9 (CO).

3.6. General procedure for the preparation of 1,3-bis(trimethylsilyloxy)alk-1-enes 2a–u

An LDA solution was prepared by the addition of *n*-BuLi to a THF solution of diisopropylamine at 0 °C. After stirring for 1 h, the solution was cooled to -78 °C and the respective 3-hydroxyesters (**1a–u**) were added. After stirring for 1 h at -78 °C, TMSCl was added and the solution was allowed to warm to 20 °C within 14–24 h. The solvent and volatile compounds were removed in vacuo. The residue was dissolved in *n*-hexane and the suspension was filtered under inert atmosphere. The filtrate was concentrated in vacuo to give 1,3-bis(trimethylsilyloxy)alk-1-enes **2a–u**, which were used without further purification. Due to their low stability, products **2a–u** could be only characterized by NMR.

3.6.1. 1-Methoxy-1,3-bis(trimethylsilyloxy)but-1-ene (**2a**). Starting with **1a** (2.66 g, 22.5 mmol) and TMSCI (6.11 g, 56.3 mmol), **2a** was obtained as a slightly yellow liquid (4.34 g, 73%). Reaction time: 18 h. ¹H NMR (300 MHz, CDCl₃): δ =0.08 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃), 1.20 (d, ³J=6.3 Hz, 3H, CHCH₃), 3.46 (s, 3H, OCH₃), 3.59 (d, ³J=8.8 Hz, 1H, CCH), 4.60 (dq, ³J₁=8.8 Hz, ³J₂=6.3 Hz, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.2, 0.3 (Si(CH₃)₃), 25.9 (CH*C*H₃), 54.3 (OCH₃), 64.6, 81.9 (CH), 156.5 (C).

3.6.2. 1,3-Bis(trimethylsilyloxy)-1-ethoxy-but-1-ene (2b). Starting with **1b** (2.64 g, 20.00 mmol) and TMSCl (6.11 g, 56.3 mmol), **2b** was obtained as a slightly yellow liquid (4.143 g, 75%). Reaction time: 18 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.06 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, COSi(CH₃)₃-OEt), 1.18 (d, 3H, ³J=6.3 Hz, CH₃), 1.22 (t, 3H, ³J=7.0 Hz, CH₂CH₃), 3.54 (d, 1H, ³J=8.8 Hz, C=CH), 3.66 (dq, 2H, ³J=7.0 Hz, ²J=1.7 Hz, CH₂), 4.52–4.64 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.5 (Si(CH₃)₃), 14.3 (CH₂CH₃), 26.0 (CH₃), 62.8 (CH₂), 64.7 (CCH₃), 82.3 (CH), 155.5 (COEt).

3.6.3. 1-Ethoxy-1,3-bis(trimethylsilyloxy)pent-1-ene (2c). Starting with **1c** (6.58 g, 45.0 mmol) and TMSCl (12.22 g, 112 mmol), **2c** was obtained as a clear yellow liquid (12.92 g, 99%). Reaction time: 19 h. ¹H NMR (300 MHz, CDCl₃): δ =0.09 (s, 9H, Si(CH₃)₃), 0.21 (s, 9H, Si(CH₃)₃), 0.85 (t, ³*J*=7.4 Hz, 3H, CHCH_AH_BCH₃), 1.28 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 1.33–1.65 (m, 2H, CHCH_AH_B), 3.51 (d, ³*J*=8.9 Hz, 1H, CCH), 3.72 (q, ³*J*=7.1 Hz, 2H, OCH₂), 4.33 (dt, ³*J*₁=8.9 Hz, ³*J*₂=6.6 Hz, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.4 (Si(CH₃)₃), 10.3, 14.3 (CH₃), 32.3 (CHCH₂), 62.8 (OCH₂), 70.0, 80.7 (CH), 156.1 (C). MS (EI, 70 eV): *m/z* (%)=292 ([M+2]⁺, 2), 261 (16), 143 (29), 131 (33), 75 (50), 74 (100), 28 (75).

3.6.4. 1-*tert*-Butoxy-1,3-bis(trimethylsilyloxy)-pent-1-ene (2d). Starting with 1d (3.48 g, 20.00 mmol) and TMSCI

12559

(12.22 g, 112 mmol), **2d** was obtained as a clear yellow liquid (6.178 g, 97%). Reaction time: 19 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.11 (s, 9H, Si(CH₃)₃), 0.22 (s, 9H, COSi(CH₃)₃O-t-Bu), 0.87 (t, >3H, CH₃), 1.34 (s, 9H, C(CH₃)₃), 1.45 (m, >2H, CH₂), 3.94 (d, 1H, ³J=9 Hz, C=CH), 4.28 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.6 (COSi(CH₃)₃O-t-Bu), 10.4 (CH₂CH₃), 28.4 (C(CH₃)₃), 32.0 (CH₂CH₃), 70.3 (C=CH), 78.8 (C(CH₃)₃), 93.7 (CH), 151.6 (CO₂-t-Bu).

3.6.5. 1,3-Bis(trimethylsilyloxy)-1-ethoxy-hex-1-ene (2e). Starting with **1e** (3.2 g, 20.0 mmol) and TMSCl (3.447 g, 32 mmol), **2e** was obtained as a clear yellow liquid (4.811 g, 79%) Reaction time: 19 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.06 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, COSi-(CH₃)₃OEt), 0.91 (t, 3H, CH₃), 1.23 (t, 3H, ³J=6.9 Hz, OCH₂CH₃), 1.18–1.50 (signal overlap, 4H, CH₂CH₂CH₃), 3.49 (d, 1H, ³J=8.9 Hz, C=CH), 3.71 (q, ³J=7.0 Hz, 2H, OCH₂CH₃), 4.46–4.39 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.4 (COSi(CH₃)₃OEt), 13.9 (CH₃), 14.3 (OCH₂CH₃), 19.1 (CH₂CH₂CH₃), 41.8 (CH₂CH₂CH₃), 62.8 (OCH₂CH₃), 68.3 (C=CH), 80.9 (CH), 156.0 (COEt).

3.6.6. 1,3-Bis(trimethylsilyloxy)-1-ethoxy-4-methyl-pent-1-ene (2f). Starting with **1f** (3.2 g, 20.0 mmol) and TMSCI (3.447 g, 32 mmol), **2f** was obtained as a clear yellow liquid (5.221 g, 86%). Reaction time: 19 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.09 (s, 9H, Si(CH₃)₃), 0.20 (s, 9H, COSi-(CH₃)₃OEt), 0.82 (d, 3H, ³J=6.7 Hz, CH₃), 0.87 (d, 3H, ³J=6.7 Hz, CH₃), 1.28 (t, 3H, ³J=7.0 Hz, CH₂CH₃), 1.6 (m, 1H, CH(CH₃)₂), 3.5 (d, 1H, ³J=9 Hz, C=CH), 3.72 (q, 2H, ³J=7.0 Hz, CH₂), 4.08–4.21 (m, >1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.5 (COSi-(CH₃)₃OEt), 14.4 (CH₂CH₃), 18.3 (CH₃), 18.9 (CH₃), 35.6 (CH(CH₃)₂), 62.8 (CH₂), 73.7 (C=CH), 87.7 (CH), 156.3 (COEt).

3.6.7. 1-Ethoxy-1,3-bis(trimethylsilyloxy)hept-1-ene (2g). Starting with **1g** (3.92 g, 22.5 mmol) and TMSCl (6.11 g, 56.3 mmol), **2g** was obtained as a clear yellow liquid (7.17 g, 100%). Reaction time: 24 h. ¹H NMR (300 MHz, CDCl₃): δ =0.10 (s, 9H, Si(CH₃)₃), 0.21 (s, 9H, Si(CH₃)₃), 0.86–0.94 (m, 3H, CH₂CH₂CH₃), 1.20–1.60 (m, 9H, (CH₂)₃, OCH₂CH₃), 3.51 (d, ³J=8.9 Hz, 1H, CCH), 3.72 (q, ³J=7.1 Hz, 2H, OCH₂), 4.41 (m, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.5 (Si(CH₃)₃), 14.1, 14.3 (CH₃), 22.6, 28.1, 39.3 (CH₂), 62.8 (OCH₂), 68.6, 81.0 (CH), 156.0 (C). MS (EI, 70 eV): *m*/*z* (%)=318 (M⁺, 0.2), 261 (42), 231 (11), 189 (13), 159 (12), 146 (25), 143 (100), 110 (19), 28 (20).

3.6.8. 1-(*tert*-Butoxy)-1,3-bis(trimethylsilyloxy)hept-1ene (2h). Starting with 1h (4.56 g, 22.5 mmol) and TMSCl (6.11 g, 56.3 mmol), 2h was obtained as a clear yellow liquid (5.95 g, 76%). Reaction time: 22 h. ¹H NMR (300 MHz, CDCl₃): δ =0.08 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃), 0.86 (m, 3H, CH₂CH₃), 1.13–1.52 (m, 15H, (CH₂)₃), 0.(CH₃)₃), 3.90 (d, ³J=8.9 Hz, 1H, CCH), 4.33 (ddd, ³J₁=8.9 Hz, ³J₂=7.2 Hz, ³J₃=5.6 Hz, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.5 (Si(CH₃)₃), 14.1 (CH₂CH₃), 22.5, 28.1 (CH₂), 28.4 (C(CH₃)₃), 38.9 (CH₂), 68.8 (CH), 78.6 (OC(CH₃)₃), 93.8 (CH), 151.4 (CCH). **3.6.9. 1,3-Bis(trimethylsilyloxy)-1-ethoxy-5-methyl-hex-1-ene (2i).** Starting with **1i** (3.48 g, 20.00 mmol) and TMSCI (3.447 g, 32 mmol), **2i** was obtained as a clear yellow liquid (4.754 g, 75%). Reaction time: 22 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.10 (s, 9H, Si(CH₃)₃), 0.20 (s, 9H, COSi(CH₃)₃OEt), 0.87 (d, 6H, ³J=6.3 Hz, CH₃), 1.20–1.30 (m, 4H, CH_AH_B, CH₃), 1.36–1.48 (m, 1H, CH_AH_B), 1.55–1.65 (m, 1H, CH(CH₃)₂), 3.47 (d, 1H, ³J=9 Hz, C=CH), 3.70 (q, 2H, ³J=6.9 Hz, CH₂CH₃), 4.46–4.56 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.5 (COSi(CH₃)₃OEt), 14.3 (CH₂CH₃), 23.7 (CH(CH₃)₂), 24.8 (CH₃), 48.9 (CH₂), 62.8 (CH₂CH₃), 67.0 (C=CH), 81.1 (CH), 155.9 (COEt).

3.6.10. 1-Methoxy-4,4-dimethyl-1,3-bis(trimethylsilyloxy)pent-1-ene (2j). Starting with **1j** (3.58 g, 22.3 mmol) and TMSCl (6.11 g, 56.3 mmol), **2j** was obtained as a clear yellow liquid (4.97 g, 73%). Reaction time: 19 h. ¹H NMR (300 MHz, CDCl₃): δ =0.07 (s, 9H, Si(CH₃)₃), 0.20 (s, 9H, Si(CH₃)₃), 0.84 (s, 9H, C(CH₃)₃), 3.51 (s, 3H, OCH₃), 3.54 (d, ³J=9.3 Hz, 1H, OCHC*H*), 4.07 (d, ³J=9.3 Hz, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.5 (Si(CH₃)₃), 25.8 (C(CH₃)₃), 35.9 (*C*(CH₃)₃), 54.4 (OCH₃), 75.9, 77.1 (CH), 157.2 (*C*=CH).

3.6.11. 1-Methoxy-1,3-bis(trimethylsilyloxy)non-1-ene (**2k**). Starting with **1k** (4.23 g, 22.5 mmol) and TMSCI (6.11 g, 56.3 mmol), **2k** was obtained as a clear yellow liquid (6.81 g, 91%). Reaction time: 17 h. ¹H NMR (300 MHz, CDCl₃): δ =0.09 (s, 9H, Si(CH₃)₃), 0.20 (s, 9H, Si(CH₃)₃), 0.88 (m, 3H, CH₂CH₃), 1.15–1.60 (m, 10H, (CH₂)₅), 3.49 (s, 3H, OCH₃), 3.54 (d, ³J=8.9 Hz, 1H, CCH), 4.40 (m, 1H, OCH). ¹³C NMR (75 MHz, CDCl₃): δ =0.27, 0.34 (Si(CH₃)₃), 14.0 (CH₂CH₃), 22.6, 25.8, 29.1, 31.9, 39.5 (CH₂), 54.4 (OCH₃), 68.5, 80.7 (CH), 157.0 (C).

3.6.12. 1,3-Bis(trimethylsilyloxy)-1-ethoxy-3-vinylprop-1-ene (2l). Starting with **11** (2.88 g, 20.00 mmol) and TMSCI (3.447 g, 32 mmol), **21** was obtained as a clear yellow liquid (3.024 g, 52%). Reaction time: 22 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.13 (s, 9H, Si(CH₃)₃), 0.23 (s, 9H, COSi(CH₃)₃OEt), 1.25–1.32 (m, overlap, 3H, CH₃), 3.58 (d, 1H, ³J=9.1 Hz, C=CH), 3.74 (qd, 2H, ²J=1.4 Hz, ³J=7.0 Hz, CH₂), 4.06–4.26 (m, 1H, CH), 4.90–4.98 (m, 2H, CHCH₂), 5.79–5.94 (m, 1H, CHCH₂). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.4 (COSi(CH₃)₃OEt), 14.3 (CH₃), 62.9 (CH₂), 69.4 (C=CH), 79.3 (CH), 111.8 (CHCH₂), 142.1 (CHCH₂), 156.5 (COEt).

3.6.13. 1-Ethoxy-1,3-bis(trimethylsilyloxy)trideca-1,12diene (2m). Starting with **1m** (5.86 g, 22.9 mmol) and TMSCl (6.23 g, 57.3 mmol), **2m** was obtained as a clear yellow liquid (8.51 g, 93%). Reaction time: 20 h. ¹H NMR (250 MHz, CDCl₃): δ =0.09 (s, 9H, Si(CH₃)₃), 0.20 (s, 9H, Si(CH₃)₃), 1.20–1.60 (m, 17H, OCH(CH₂)₇, CH₃), 2.03 (m, 2H, H₂C=CHCH₂), 3.49 (d, ³J=8.9 Hz, 1H, CCH), 3.71 (q, ³J=7.0 Hz, 2H, OCH₂), 4.40 (dt, ³J₁=8.9 Hz, ³J₂=6.4 Hz, 1H, OCH), 4.87–5.03 (m, 2H, H₂C=CH), 5.80 (ddt, ³J₁=17.0 Hz, ³J₂=10.3 Hz, ³J₃=6.7 Hz, 1H, H₂C=CH). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.5 (Si(CH₃)₃), 14.3 (CH₃), 25.9, 28.9, 29.1, 29.5, 29.5, 29.6, 33.8, 39.5 ((CH₂)₈), 62.8 (OCH₂), 68.6, 81.0 (CH), 114.0 (CH₂CHCH₂CH₂), 139.1 (CH₂CHCH₂), 156.0 (C). **3.6.14. 1,3-Bis(trimethylsilyloxy)-1-methoxy-4-phenylbut-1-ene (2n).** Starting with **1n** (3.88 g, 20.00 mmol) and TMSCI (3.447 g, 32 mmol), **2n** was obtained as a clear yellow liquid (5.877 g, 87%). Reaction time: 22 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.05 (s, 9H, Si(CH₃)₃), 0.19 (s, 9H, COSi(CH₃)₃OEt), 2.81 (qd, ³J=7.4, 5.7 Hz, ²J=13 Hz, 2H, CH₂), 3.51 (s, 3H, OMe), 3.70 (d, 1H, ³J=8.9 Hz, -C=CH), 4.60–4.68 (m, 1H, CH), 7.10–7.45 (m, 5H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =0.01 (Si(CH₃)₃), 0.3 (COSi(CH₃)₃OEt), 46.0 (CH₂), 54.5 (OMe), 69.9 (C=CH), 80.1 (CH), 125.7 (Ar), 127.8 (Ar), 129.8 (Ar), 139.6 (Ar), 157.1 (COMe).

3.6.15. 1-Ethoxy-3-phenyl-1,3-bis(trimethylsilyloxy)prop-1-ene (20). Starting with **10** (4.35 g, 22.4 mmol) and TMSCl (6.11 g, 56.3 mmol), **20** was obtained as a clear yellow-orange liquid (7.01 g, 92%). Reaction time: 17 h. ¹H NMR (300 MHz, CDCl₃): δ =0.25 (s, 9H, Si(CH₃)₃, major), 0.27 (s, 9H, Si(CH₃)₃, major), 0.34 (s, 9H, Si(CH₃)₃, minor), 0.37 (s, 9H, Si(CH₃)₃, major), 1.37 (t, ³*J*=7.0 Hz, 3H, CH₃, major), 1.38 (t, ³*J*=7.0 Hz, 3H, CH₃, minor), 3.78–3.89 (m, 3H, OCH₂, OCHC*H*, major), 4.00–4.07 (m, 3H, OCH₂, OCHC*H*, minor), 5.72 (m, 1H, OCH, both), 7.30 (m, 1H, Ph, both), 7.39 (m, 2H, Ph, both), 7.49 (d, ³*J*=7.3 Hz, 2H, Ph, both). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.6 (Si(CH₃)₃), 14.3 (CH₃), 62.9 (OCH₂), 70.1, 81.6 (CH), 125.6, 126.2, 127.9 (CH_{Ar}), 146.7, 156.5 (C).

3.6.16. 1-Ethoxy-3-(4-tolyl)-1,3-bis(trimethylsilyloxy)prop-1-ene (2p). Starting with **1p** (4.34 g, 20.8 mmol) and TMSCl (6.11 g, 56.3 mmol), **2p** was obtained as a clear orange liquid (6.97 g, 95%). Reaction time: 19 h. ¹H NMR (250 MHz, CDCl₃): δ =0.13 (s, 9H, Si(CH₃)₃, major), 0.16 (s, 9H, Si(CH₃)₃, minor), 0.24 (s, 9H, Si(CH₃)₃, minor), 0.26 (s, 9H, Si(CH₃)₃, major), 1.27 (t, ³*J*=7.0 Hz, 3H, CH₃, major), 1.28 (t, ³*J*=7.0 Hz, 3H, CH₃, minor), 2.33 (s, 3H, ArCH₃, both), 3.66–3.79 (m, 3H, OCH₂, OCHC*H*, major), 3.88–3.97 (m, 3H, OCH₂, OCHC*H*, minor), 5.58 (m, 1H, OCH, both), 7.06–7.13 (m, 2H, Ar, both), 7.23–7.30 (m, 2H, Ar, both). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.5 (Si(CH₃)₃), 14.3 (CH₂CH₃), 21.0 (ArCH₃), 62.9 (CH₂), 70.0, 81.8 (CH), 125.5, 128.6 (CH_{Ar}), 135.7, 143.7, 156.4 (C).

3.6.17. 1-Ethoxy-3-(4-methoxyphenyl)-1,3-bis(trimethylsilyloxy)prop-1-ene (2q). Starting with **1q** (4.34 g, 20.8 mmol) and TMSCI (6.11 g, 56.3 mmol), **2q** was obtained as a clear orange liquid (6.92 g, 91%). Reaction time: 19 h. The compound was used directly after its preparation, due to its unstable nature. Spectroscopic data were not obtained.

3.6.18. 1-([1,3-Bis(trimethylsilyloxy)]-3-methoxy-2-propenyl)-2-methylbenzene (2r). Starting with **1r** (3.88 g, 20.00 mmol) and TMSCI (3.447 g, 32 mmol), **2r** was obtained as a clear orange liquid (4.989 g, 74%). Reaction time: 19 h. ¹H NMR (CDCl₃, 300 MHz): δ =0.16 (s, 9H, Si(CH₃)₃), 0.21 (s, 9H, COSi(CH₃)₃OEt), 2.3 (s, 3H, ArCH₃), 3.49 (s, 3H, OCH₃), 5.68 (d, 1H, ³J=2.7 Hz, CH), 5.71 (d, 1H, ³J=2.4 Hz, C=CH), 7.05–7.13 (m, 4H, –Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =0.3 (Si(CH₃)₃), 0.5 (COSi(CH₃)₃OEt), 19.0 (ArCH₃), 54.6 (OMe), 67.6 (C=CH), 79.6 (CH), 125.2 (Ar), 125.8 (Ar), 126.1 (Ar), 129.8 (Ar), 133.9 (Ar), 144.7 (Ar), 157.5 (COMe).

3.6.19. 3-1-Ethoxy-3-(2-methoxyphenyl)-1,3-bis(trimethylsilyloxy)prop-1-ene (2s). Starting with **1s** (5.05 g, 22.5 mmol) and TMSCI (6.11 g, 56.3 mmol), **2s** was obtained as a clear yellow-orange liquid (7.28 g, 88%). Reaction time: 17 h. ¹H NMR (250 MHz, CDCl₃): δ =0.11 (s, 9H, Si(CH₃)₃), 0.28 (s, 9H, Si(CH₃)₃), 1.27 (t, ³*J*=7.0 Hz, 3H, CH₂C*H*₃), 3.73 (q, ³*J*=7.0 Hz, 2H, OCH₂), 3.80 (d, ³*J*=9.2 Hz, 1H, OCHC*H*), 3.84 (s, 3H, OCH₃), 5.95 (d, ³*J*=9.2 Hz, 1H, OCH), 6.82–7.03 (m, 2H, Ar), 7.17–7.29 (m, 1H, Ar), 7.50–7.57 (m, 1H, Ar). ¹³C NMR (75 MHz, CDCl₃): δ =0.2, 0.4 (Si(CH₃)₃), 14.3 (CH₂CH₃), 55.3 (OCH₃), 62.8 (CH₂), 64.7, 80.9 (CH), 110.5, 120.5, 126.9, 127.3 (CH_{Ar}), 135.0, 155.6, 156.4 (C).

3.6.20. (4-Chlorophenyl)-1-ethoxy-1,3-bis(trimethylsilyloxy)prop-1-ene (2t). Starting with 1t (5.11 g, 22.3 mmol) and TMSCl (6.19 g, 57.0 mmol), 2t was obtained as a clear orange-red liquid (7.92 g, 95%). Reaction time: 17 h. ¹H NMR (250 MHz, CDCl₃): δ =0.14 (s, 9H, Si(CH₃)₃, major), 0.16 (s, 9H, Si(CH₃)₃, minor), 0.23 (s, 9H, Si(CH₃)₃, minor), 0.27 (s, 9H, Si(CH₃)₃, major), 1.28 (t, ³*J*=7.0 Hz, 3H, CH₃, both), 3.67 (d, ³*J*=8.9 Hz, 1H, OCHC*H*, major), 3.73 (m, 2H, OCH₂, major), 3.85 (d, ³*J*=8.9 Hz, 1H, OCHC*H*, minor), 3.93 (m, 2H, OCH₂, minor), 5.56 (d, ³*J*=8.9 Hz, 1H, OCH, minor), 7.23–7.34 (m, 4H, Ar, both). ¹³C NMR (75 MHz, CDCl₃): δ =0.3, 0.6 (Si(CH₃)₃), 14.3 (CH₃), 63.0 (CH₂), 69.6, 81.2 (CH), 127.0, 128.0 (CH_{Ar}), 131.8, 145.3, 156.6 (C).

3.6.21. 1-Ethoxy-3-methyl-1,3-bis(trimethylsilyloxy)but-1-ene (2u). Starting with **1u** (3.29 g, 22.5 mmol) and TMSCI (6.11 g, 56.3 mmol), **2u** was obtained as a clear yellow liquid (2.32 g, 35%). Reaction time: 14 h. ¹H NMR (250 MHz, CDCl₃): δ =0.10 (s, 9H, Si(CH₃)₃, major), 0.11 (s, 9H, Si(CH₃)₃, minor), 0.15 (s, 9H, Si(CH₃)₃, major), 0.21 (s, 9H, Si(CH₃)₃, minor), 1.26 (t, ³*J*=7.2 Hz, 3H, CH₂C*H*₃, minor), 1.27 (t, ³*J*=7.0 Hz, 3H, CH₂C*H*₃, major), 1.37 (s, 6H, C(CH₃)₂, minor), 1.39 (s, 6H, C(CH₃)₂, major), 3.61 (s, 1H, CH, major), 3.67 (q, ³*J*=7.0 Hz, CH₂, major), 4.07–4.18 (m, 2H, CH₂ minor). ¹³C NMR (75 MHz, CDCl₃): δ =0.5, 0.6 (Si(CH₃)₃), 14.4 (CH₂CH₃), 30.2 (C(CH₃)₂), 62.9 (CH₂), 72.7 (CH₃C), 85.5 (CH), 156.3 (*C*=CH).

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft, from the DAAD (scholarship for D.F.), and from the state of Pakistan (HEC scholarship for I.H. and M.A.Y.) is gratefully acknowledged.

References and notes

 For reviews, see for example: (a) Rao, Y. S. Chem. Rev. 1976, 76, 625; (b) Pattenden, G. Prog. Chem. Nat. Prod. 1979, 35, 133; (c) Gill, M.; Steglich, W. Prog. Chem. Org. Nat. Prod. 1987, 51, 1; (d) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287; (e) Negishi, E.-i.; Kotora, M. Tetrahedron 1997, 53, 6707; For reviews of syntheses of γ-alkylidenebutenolides, see: (f) Brückner, R. Chem. Commun. 2002, 141; (g) Brückner, R. Curr. Org. Chem. 2001, 5, 679; (h) Langer, P. Synlett 2006, 3369.

- (a) Huneck, S.; Takeda, R. Z. Naturforsch., B 1992, 47, 842; (b) Chester, C.; Elix, J. A. Aust. J. Chem. 1979, 32, 2565.
- (a) Bodo, B.; Molho, D. *Phytochemistry* **1980**, *19*, 1117; (b) Ghogomu, R. T.; Bodo, B. *Phytochemistry* **1982**, *21*, 2355.
- David, F.; Elix, J. A.; Samsudin, M. W. Aust. J. Chem. 1990, 43, 1297.
- (a) Huneck, S.; Tonsberg, T.; Bohlmann, F. *Phytochemistry* 1986, 25, 453; (b) Maier, M. S.; Marimon, D. I. G.; Stortz, C. A.; Adler, M. T. *J. Nat. Prod.* 1999, 62, 1565.
- Allison, A. J.; Butcher, D. N.; Connolly, J. D.; Overton, K. H. J. Chem. Soc., Chem. Commun. 1968, 1493.
- (a) Singh, P.; Sharma, A. K.; Joshi, K. C.; Jakupovic, J.; Bohlmann, F. *Phytochemistry* **1985**, *24*, 2023; (b) Bosetti, A.; Fronza, G.; Vidari, G.; Vita-Finzi, P. *Phytochemistry* **1989**, *28*, 1427.
- Marco, J. A.; Sanz-Cervera, J. F.; Corral, J.; Carda, M.; Jakupovic, J. *Phytochemistry* **1993**, *34*, 1569.
- Sheu, J.-H.; Wang, G.-H.; Duh, C.-Y.; Soong, K. J. Nat. Prod. 2003, 66, 662.
- Yuan, X.-H.; Li, B.-G.; Zhang, X.-Y.; Qi, H.-Y.; Zhou, M.; Zhang, G.-L. J. Nat. Prod. 2005, 68, 86.
- Barros, M. T.; Maycock, C. D.; Ventura, M. R. Org. Lett. 2003, 22, 4097.
- 12. Pallenberg, A. J.; White, J. D. Tetrahedron Lett. 1986, 5591.
- Namiki, T.; Nishikawa, M.; Itoh, Y.; Uchida, I.; Hashimoto, M. *Tetrahedron Lett.* 1987, 1400.
- Pearce, A. N.; Appleton, D. R.; Babcock, R. C.; Copp, B. R. *Tetrahedron Lett.* **2003**, *44*, 3897.
- Toyoda-Ono, Y.; Maeda, M.; Nakao, M.; Yoshimura, M.; Sugiura-Tomimori, N.; Fukami, H. J. Agric. Food Chem. 2004, 52, 2092.
- (a) Adamczeski, M.; Quinoa, E.; Crews, P. J. Am. Chem. Soc. 1989, 111, 647; (b) Anderson, J. R.; Edwards, R. L.; Whalley, A. J. S. J. Chem. Soc., Perkin Trans. 1 1982, 215; (c) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H. Phytochemistry 1982, 21, 695; (d) Keates, S. E.; Loewus, F. A.; Helms, G. L.; Zink, D. L. Phytochemistry 1998, 49, 2397; (e) Lin, W.-H.; Fang, J.-M.; Cheng, Y. S. Phytochemistry 1999, 50, 653; (f) Enders, D.; Dyker, H.; Leusink, F. R. Chem.—Eur. J. 1998, 4, 311 and references cited therein.
- 17. Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510.
- 18. Mack, H.; Brossmer, R. Tetrahedron 1998, 54, 4521.
- 19. Mack, H.; Brossmer, R. Tetrahedron Lett. 1992, 33, 1867.
- Lafont, D.; Hoch, M.; Schmidt, R. R. J. Carbohydr. Chem. 1986, 5, 601.
- 21. Holmquist, L. Acta Chem. Scand. 1971, 25, 712.
- 22. Barrett, A. G. M.; Sheth, H. G. J. Org. Chem. 1983, 48, 5017.
- 23. Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1564.
- 24. (a) See Ref. 22; (b) Camer, A.; Ventura, M.; Zimmer, H. J. Heterocycl. Chem. 1983, 20, 359; (c) Bonadies, F.; Scarpati, M. L. Gazz. Chim. Ital. 1983, 113, 421; Bonadies, F.; Scarpati, M. L.; Savagnone, F. Gazz. Chim. Ital. 1982, 112, 1; (e) Schmidt, R. R.; Kast, J.; Speer, H. Synthesis 1983, 725.
- 25. Feit, B.-A.; Haag, B.; Kast, J.; Schmidt, R. R. J. Chem. Soc., Perkin Trans. 1 1986, 2027.
- Zimmer, H.; Palmer-Sungail, R.; Ho, D.; Amer, A. J. Heterocycl. Chem. 1993, 30, 161.

- Lee, H. J.; Kim, T. Y.; Kim, J. N. Synth. Commun. 1999, 29, 4375.
- Nozaki, K.; Sato, N.; Ikeda, K.; Takaya, H. J. Org. Chem. 1996, 61, 4516.
- 29. Nair, V.; Nair, J. S.; Vinod, A. U. Synthesis 2000, 1713.
- (a) Saalfrank, R. W.; Lutz, T. Angew. Chem. 1990, 102, 1064; Angew. Chem., Int. Ed. Engl. 1990, 29, 1041; (b) Saalfrank, R. W.; Lutz, T.; Hoerner, B.; Guendel, J.; Peters, K.; von Schnering, H. G. Chem. Ber. 1991, 124, 2289.
- Murai, S.; Hasegawa, K.; Sonoda, N. Angew. Chem. 1975, 87, 668; Angew. Chem., Int. Ed. Engl. 1975, 14, 636.
- 32. Review of 1,3-bis(silyl enol ethers): Langer, P. Synthesis 2002, 441.
- 33. Review: Langer, P. Synlett 2006, 3369.
- Dede, R.; Michaelis, L.; Langer, P. *Tetrahedron Lett.* 2005, 46, 8129.
- (a) Ohtake, H.; Imada, Y.; Murahashi, S.-I. J. Org. Chem. 1999, 64, 3790; (b) Hattori, K.; Yamamoto, H. Bioorg. Med. Chem. Lett. 1993, 11, 2337; (c) Hattori, K.; Yamamoto, H. Tetrahedron 1994, 50, 3099; (d) Caron, B.; Brassard, P. Tetrahedron 1993, 49, 771; (e) Gu, J. H.; Terada, M.; Mikami, K.; Nakai, T. Tetrahedron Lett. 1992, 33, 1465; (f) Hoffman, R. V.; Kim, H. O. J. Org. Chem. 1991, 56, 6759; (g) Shirai, F.; Nakai, T. Tetrahedron Lett. 1988, 29, 6461; (h) Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron 1988, 44, 5553; (i) Guanti, G.; Narisano, E.; Banfi, L. Tetrahedron Lett. 1987, 28, 4335.
- Rahn, T.; Nguyen, V. T. H.; Dang, T. H. T.; Ahmed, Z.; Lalk, M.; Fischer, C.; Spannenberg, A.; Langer, P. J. Org. Chem. 2007, 72, 1957.
- Heurtaux, B.; Lion, C.; Le Gall, T.; Mioskowski, C. J. Org. Chem. 2005, 70, 1474.
- Rotzoll, S.; Ullah, E.; Görls, H.; Langer, P. *Tetrahedron* 2007, 63, 26.
- Swaren, P.; Massova, I.; Bellettini, J. R.; Bulychev, A.; Maveyraud, L. J. Am. Chem. Soc. 1999, 121, 5353.
- Kurcok, P.; Jedlinski, Z.; Kowalczuk, M. J. Org. Chem. 1993, 58, 4219.
- 41. Righi, G.; Rumboldt, G.; Bonini, C. Tetrahedron 1995, 51, 13401.
- 42. Dubois, J. E. Bull. Soc. Chim. Fr. 1963, 1491.
- Parrish, J. D.; Shelton, D. R.; Little, R. D. Org. Lett. 2003, 5, 3615.
- 44. Frankenfeld, J. W.; Werner, J. J. J. Org. Chem. 1969, 34, 3689.
- Curran, D. P.; Scanga, S. A.; Fenk, C. J. J. Org. Chem. 1984, 49, 3474.
- Hu, Y.; Skalitzky, D. J.; Rychnovsky, S. D. *Tetrahedron Lett.* 1996, *37*, 8679.
- 47. Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K.-T. J. Am. Chem. Soc. 1996, 118, 7404.
- 48. Isayama, S. Bull. Chem. Soc. Jpn. 1990, 63, 1305.
- Crimmins, M. T.; Wang, Z.; McKerlie, L. A. J. Am. Chem. Soc. 1998, 120, 1747.
- 50. Komoto, I.; Kobayashi, S. J. Org. Chem. 2004, 69, 680.
- 51. Lee, P. H.; Bang, K.; Lee, K.; Sung, S.-y.; Chang, S. Synth. Commun. 2001, 31, 3781.
- Saito, M.; Kamei, Y.; Kuribara, K.; Yoshioka, M. J. Org. Chem. 1998, 63, 9013.
- 53. Chattopadhyay, A.; Salaskar, A. Synthesis 2000, 561.